Applications

ﬁ_' Issue Number 64 November/December 1993 US$4.00

Small System Support

Z-System Corner
DR S$-100

Real Computing

Support Groups
" IDE Drives part Ii
Small-C?
Moving Forth Part IV

Mr. Kaypro

4 wenrnean

ripheral Technology

8000 System Boards with 4 Serial/
Parallel Ports, FDC, and RTC.
68K4-16 with 1MB $299.00
2-10 w/ 1IMB (Used) $149.00
_Operating System Included

¥2.4 Operating System $299.00

¥ith C, Editor, Assembler/Linker
JULPTOR V1.14:6 for Business

vare Development - requires any

irsion of 0S9/68K. $79.00

r 68XXX products available!

1480 Terrell Mill Rd. #870
- Marietta, GA 30067
- 404/973-2156

irney with us to discover the shortest path between
| programming problems and efficient solutions.

“The Forth programming language is a model of simplicity:
Inabout 16K, it canofferacomplete development systeminterms
7, editor,andassembler, aswell asaninterpretivemode
¢ debugging, profiling, and tracing.

“open” lénguage, Forth lets you build new control-flow
' s, and other compiler-oriented extensions that closed
ages-do not.

Dimensions is the magazine to help you along this
Itisone ofthe benefits you receive as amemberof the
t Forth Interest Group (FIG). Local chapters, the
ForthRoundTable,andannual FORML conferences are
srted by FIG. Toreceive a mail-order catalog of Forth
_ s and disks, call 510-89-FORTH or write to:

4h Interest Group, P.0. Box 2154, Oakland, CA 94621.

ership dues begin at $40 for the U.S.A. and Canada.

begin at $18 (with valid student LD.).

trademark of General Electric.

Cross-Assemblers .o ssow
Simulators .. cu s s10.00
Cross-Disassemblers . ows “10m
DeveIoPer Packaqges

as low as $200.00(a $50.00 Savings

A New Project
Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.
Get It To Market--FAST

Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built.

No Source!
A minor glitch has shown up in the firmware, and you can't find the original
source program. Our line of disassembiers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.”,
you'it be ready for anything.

Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1985,

BROAD RANGE OF SUPPORT
e Currently we support the foilowing microprocessor families (with
more in development): :

Intel 8048 RCA 1802,05 Intel 8051 Intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 6502
Rockwell 85C02 Intei 8080,85 Zilog 280

NSC 800
Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80196
e All products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp

Professional DeveIog»nent Products Group
716 Thimble Shoals Bivd, Svite E
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

SAGE MICROSYSTEMS EAST

Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BDOS ($30)

ZCPR34 source code ($15)
BackGrounder-ii ($20)
ZMATE text editor ($20)
BDS C for Z-system (only $30)
DSD: Dynamic Screen Debugger ($50)
4DOS "zsystem" for MSDOS ($65)
ZMAC macro-assembler ($45 with printed manual)

Kaypro DSDD and MSDOS 360K FORMATS ONLY
Order by phone, mail, or modem and use
Check, VISA, or MasterCard. Please include
$3.00 Shipping and Handling for each order.

Sage Microsystems East
1435 Centre Street
Newton Centre MA 02159-2469
(617) 965-3552 (voice 7PM to 11PM)
(617) 965-7259 (pw=DDT)
MABOS on PC-Pursuit

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consultant
Chris McEwen

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriquez
Ronald W. Anderscn
Tim McDonough
Frank Sergeant
JW Weaver
Richard Rodman
Jay Sage
Tilmann Reh

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1993
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44 two
years (12 issues). All funds must be
in U.S. dollars drawn on a U.S.
bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal,
P.O. Box 535, Lincoln,CA 95648.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important

k Aedge these trad rks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Appie I, i+, lic, lie, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket,
Nantucket, inc. dBase, dBASE I, dBASE I, dBASE fll
Plus, dBASE 1V; Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar, MicroPro Inter-
national. IBM-PC, XT, and AT, PC-DOS; {BM Corpora-
tion. Z80, Z280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Jounal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally acknowledged in each occurrence.

TC

The Computer Journal

Issue Number 64 November/December 1993

Editor's CoOmments........ccoceeieveviceireeeecceeeeencssessssees e 2
Reader to Reader.........c..coceueemueieeieeeeeeceernereceesnneeeenns 3

Support Groups for the Classicsccevevienriennee. 10
By JW Weaver.

Mr. Kayproc.ciiiniiniieecenncrccnnneecsceceesaeennas cerranees 12
Sign on changes and Clock upgrade.
By Charles B. Stafford.

Z-Systems Corner........cccoevcerrriennnnns S, | -
Failsafe Scripts in 4DOS part 1.
By Jay Sage.

Small System Support.........cccccrinnrcnncnenerenresennene 18
6800/6809 History lesson.
By Ronald W. Anderson.

Real Computingcccouuu..e. smersseseessernsesrnnesnnaas 22
Linux and Linking.
By Rick Rodman.
Connecting IDE Drives SRS

Drive basics in this part I11.
By Tilmann Reh.

Center FOold.......cooovviviiiieiiiieeeiienerresensncessssesennns verrenenees 29
The last XEROX 820 schematic.

Disk Drives and CP/M BIOS coding part II.
By Herb Johnson.

Small-c L e L T L] semssnsmanse 40
Reviews and comments on using Smali-C.

Moving Forthccocciiiicnneniicccer e receseenenans 48

Part 1V, Assemble or Metacompile.
By Brad Rodriguez.

The Computer Corner........cccevvnminnnnininineninnnnnne. 99
By Bill Kibler.

EDITOR'S COMMENTS

-Welcome to issue number 64, a big issue
in many ways. There are many new items
to discuss and lots of regulars as well.

The newest member of The Computer
Journal writing staff is Ronald Ander-
son. His letter of introduction starts the
Reader to Reader section. Ron comes
from the 6809 world by way of the old 68
Micro Journal. Many of our readers may
remember him form his regular column
that appeared in that magazine. Since
that time Ron has continued his 6809
work while porting many of his Flex and
0S-9 products to MSDOS machines.

I have called Ron’s column *‘Small Sys-
tem Support”’, since he indicated that
his many years of designing and work-
ing on embedded controllers will be his
primary beat. Like many of our other
writers, he will actually cover many top-
ics, from reviewing and helping others
to keep their old 6809 platforms run-
ning, to broaching old ideas but using
new platforms for their solutions.

If you have any doubts about his ability
to meet our needs and challenges, I am
sure they will be all gone after reading
both his letter and first article. Welcome
aboard Ron!

Our Reader to Reader has more than
Ron’s letter. There is plenty to keep you
interested and educated. Brad Rodriguez
has an announcement of a contest that
should perk up your attention if your do
embedded controls. All starts on the next

page...

I have finally gotten around to adding
more information to JW Weavers col-
umn, so that you can find all of 7CJ
author’s contact information in one place
instead of their own articles. So check
out the Support Groups section and see

if your local group needs to have their
added.

Charles Stafford shows us how to up-
grade some Kaypro’s, while Jay Sage
provides part 2 of using PMATE MAC-
ROS. For more regular support, Rick
Rodman fills us in on how well LINUX
worked for him. Rick also explains some
insides of LINKING and a possible idea
doing with linking all our computers
together.

On the special side we continue with part
3 of Tilmann Reh’s series on IDE drives.
We get more information on their com-
mands and a sample PASCAL program
to see if we can read our drives identifi-
cation information. This is all part of his
making sure we understand enough about
IDE drives to be able to write our own
interface device drivers.

We follow Tilmann’s article with more
disk drive interfacing, by having Herb
Johnson continue his series on develop-
ing your own disk drive software or BIOS.
This time we review some of the CP/M
commands and hardware arrangements
needed to develop the BIOS code.

The long awaited Small-C article is here.
1 must confess that I feel a part 2 coming
on. Like any complex topic, choosing a
universal language is no simple task.
The article covers some good and bad
points of C and other alternatives. I con-
clude the article with short descriptions
of The C Users Group disks that have a
version of Small-C on them, Since not
all versions were covered, I hope that
some of you can send in more reports
(like J. G. Owens) on other versions you
have personal experience with.

Fortunately I asked Brad to keep it short
this time (he also had to present some
studies at the University) so his article

this issue deals with moving Forth and
some decisions you need to consider.
My objective over the next few issues is
to try and get not only Brad but everyone
else to give me about 4 printed pages per
issues.

It appears I have several articles I would
like to use but seem to be short a page or
two. I had to add two extra pages just to
get our regulars. My position is to print
whatever it takes, but if possible I think
about 4 TCJ pages each should be
enough. That means of course that some
writers will do a 3 pager onc time and 6
the next. Hopefully not all will do 6
pages at the same time or I am in big
trouble.

Speaking of troubles, I have made some
important decisions based on other hap-
penings that all our readers need to find
out about. They are all covered in my
Computer Corner. The most earth shak-
ing is finally deciding to support PC/XT
machines! That support will be limited
and clearly defined as explained in my
column. So check out our new position
and more.

That is about all your going to get this
issue, and if it isn’t enough, it is only
because your comments and letters
haven’t been received yet. The Com-
puter Journal has always been your
magazine, and if you don’t see or like
something, just drop me a note and we
will consider our options. I can’t guar-
antee every request will be granted, but
then I can’t grant anything I don’t know
about. So write and thanks for support-
ing TCJ!

The Computer Journal / #64

READER to READER

Letters to the Editor
AllReaders
MINI Articles

Dear Bill,

I received the three issues of 7CJ yester-
day. I ve read the tenth anniversary is-
sue through cover to cover, and read a
lot of the others as well. I wonder why I
hadn’t run across your publication be-
fore. Perhaps it was because of the em-
phasis on CP/M and FORTH that no-
body called it to my attention. No mat-
ter. While I was waiting for the back
issues I began to write an introductory
column. It turned out to be a history of
the 6800/6809 systems that parallels the
one in the tenth anniversary issue cover-
ing the 8080 /Z80 machines. I had al-
ready done it as an ASCII file when I
discovered yesterday that you use
WordStar 7.0, which I am using today to
write this letter. I have a package called
Emulaser with which I can do wonders
with Post Script fonts ctc. The printer is
a Citizen GSX-140.

The material I"ve submitted (on the en-
closed disk) is really two subjects. First
there is some history, but I found myself
reading all my old stuff in ‘68’ Micro
Journal and remembering all that good
software, most of which I still have
around, for the 6809 FLEX system
(which I also still have around). I
couldn’t help preparing a list of suppli-
ers and their last known address. Maybe
this will help some of your readers who
have stumbled onto 6809 systems and
wonder what to do with them. If you
would like to separate these two sub-
jects, just do so, or let me know and I
will do it for you. I would hope the
subject matter won’t undermine or dis-
turb anyone else you have lined up to do
680X material t00. I'm open to any and
all suggestions.

The Computer Journal / #64

I noted a bit of dissatisfaction on the part
of one reader who sent all his back issue
back to you. Being an outsider as far as
the CP/M world is concerned, I can eas-
ily agree with that reader. One rule
ought to be not to use a mnemonic with-
out spelling it out at least the first time
it is used. You have new subscribers all
the time, and even in the third part of a
multi-part article, the author ought not
to assume that the reader understands a
mnemonic automatically.

I have some mixed feelings about your
mix of articles and your mission (which
I may not understand correctly). I couldn’t
agree more with the idea that these old
8 bit systems are easier to understand
and better computers on which to learn
what computers are all about. If these
are really to be found for under $100 at
swap meets, they would certainly be ideal
for someone on a small budget to use to
learn about computers. On the other
hand I detect something between dis-
dain and contempt for those ‘‘IBM”’
boxes. Come on, folks. Believe it or not,
programming an 8250 (16450 in the
newer serial applications) is no harder
than programming a 6850 serial inter-
face, or, I'm sure, the Intel equivalent.
Give me a chance with some articles and
I’ll prove that. I recently needed to write
a pair of programs to allow a consulting
client to transfer a large amount of data
files from a SWTPc system using 8"
floppies, to a new 486 system, on 3.5"
1.44 Mbyte disks. I of course chose a
serial interface at each end, in order to
keep it simple. The 6809 end had a 6850
which can be initialized in a couple of
lines of code. The baud rate is set with
jumpers on the serial board. The IBM
end didn’tyield to my attempts to set the
port up using the MODE command from

DOS nor did it work as indicated when
[tried to use some of the Borland Turbo
C library functions to set it up. When [
found an 8250 data sheet, I found it no
more difficult than the 6850, except of
course that it has more steps since the
baud rate is programmable too. I was
even able to use the RTS handshake
(Request TO Send) from the IBM to the
CTS (Clear To Send) of the 6809 so 1
could stop the data flow while writing
data to the 3.5" floppy. It just isn’t that
much harder and you don’t have to go
through high level library functions OR
BIOS functions to do it.

When I translated my editor PIE to Turbo
C for IBM use, I found that writing to
the screen using BIOS calls was unac-
ceptably slow. (This was back on an old
XT about 42 times slower than my
present 386DX-40). It was not much of
a project to write directly to VIDEO
RAM. The routines were easier than try-
ing to do a screen oriented editor on a
serial terminal and I didn’t have to re-
sort to Assembly code to do the job, and
do 20 terminal configuration files for 20
different terminals.

I also detect contempt for ““C”’. C, I've
found just as viable as a procedural lan-
guage as is Pascal. I cut my teeth on
Pascal yvears ago, and at first found C to
be quite cryptic. I have news for you.
When I translated PIE from Pascal to C.
I found that I could do it line for line,
though not getting into the *‘true spirit’’
of C. You don’t have to use the ridicu-
lous features. I read about the question
mark operator and promptly forget it. In
Pascal you have to pre-read a character
from an input file before you can go into
a read loop to read ‘‘while not end of
file’’. In C you can combine the getting

of the character with the test for end of
file, and you don’t have to have two

places where a character is read from
file.

I guess, my point is that surely the good
old simple little computes are nice. My
PAT editor for the 6809 is around 29K
of object code, about 50 pages of source
in PL/9. The C version for the IBM
ended up being about 49K of object code.
A screen editor with reasonable features
doesn’t have to be 500K of object code.
Pat DOS version has more features such
as the use of color for marking blocks. It
runs very much faster on a reasonably
fast clone. I can edit a huge file and have
it all in the edit buffer at once as opposed
to pulling in a section at a time and
having to write it to disk before pulling
in another part. Hardware progress is
hardware progress. Let’s not ridicule it.

On the other hand regarding software, I
do see a conspiracy on the part of the
software suppliers to make their pro-
grams so large as to wipe out the com-
petitors who can’t put 20 or 30 program-
mers on a project at one time. Buy one
of the Borland products and I guarantee
that before you can get it installed you
will receive an offer for an upgrade for
only $89.95 plus $12.95 shipping and
handling. At this point, though I may
have moved along a bit farther than some
of you, I draw the line at Windows.
Windows is an unnecessary complica-
tion. I'd much rather type a command
and hit enter, than have to point and
click my way through 6 menus to do the
same thing!

Regarding cost, you guys out there who
are now finding the bargain oldies are
really in luck. I figure my 6809 system
had about $4000 invested in it in its
heyday. I have three IBM clones that
haven’t cost that in total, thanks to find-
ing old hard drives at bargain prices,
and not throwing away old motherboards
when they are upgraded, etc.

Well, I've more than said my piece. If
you can live with a cantankerous old
opinionated grouch (when it comes to
computers particularly), I would be
pleased to write a regular column for
you. Comments and criticisms will be

greatly appreciated. I’d like to do what
you want and need for the most part,
though I reserve the right to needle a bit
as I have done in this letter. I see as
usual, I will end up with my signature on
a fresh page!

Yours truly, Ron Anderson.
Welcome to TCJ Ron!

Your line about being a bit opinionated
(notice I ignored the OLD and Grouch
part) fits right in with most of us at The
Computer Journal. As you will find out,
I am a one person staff, so when [talk
about ““US’’ it is the readers who are
the other members of my staff I rely on
them to correct me if I error (or our
wrilers) too far in any direction. Your
background and comments (your history
is just wonderful) are going to be greatly
appreciated.

Let me say you have correctly under-
stood a number of TCJ ’s positions. Learn-
ing about hardware and software inter-
Jacing on any machine is transferable to
any other platform. My problems about
recommending IBM Clones for learning
is based on experience. I have had BIOS’s
turn off interrupts while trying to do 1/0O.
My OS8/2 platform crashes two or three
time a day. Yes the hardware is much
better (who can complain about having
a mainframe on your desk), but more
problems and a much higher level of
understanding came with them. I guess
the main issue for TCJ readers is just
cost. The older machines are cheaper
still (but clone parts are getting very
close) and the test equipment is by far
cheaper. Now if all you want to work on
is 4 Mhz clones a simple 35MHZ oscil-
loscope will do just as well here as on a
4Mhz Z80. 1t will prove useless on a
35Mhz 486 Clone however.

The Computer Journals main objective
is to teach our readers how to use and
repair (or keep running) ANY machine
they chose to use. Since all other com-
puter magazines in the world have re-
Jused to support or even acknowledge
that people still use Z80 and 6809 based
machines for every day tasks, we have
decided to support as best we can these
wonderful old machines. Many of our

readers have found these old machines
to be works of art and are fascinated
with them from a collectible aspect (much
as an antique car collector enjoys his
collectible old machine). We are limited
in the amount of coverage we can give
any platform however, due mostly from
lack of advertisers and limited number
of pages. I felt strongly that several other
magazines provided (or said they pro-
vided) technical support of PC clones
and as such I have no desire to compete
head on with them.

It appears now that the support is for the
new 386/486 machines only, and not the
older and obsolete PC/XT platforms. So
starting now we are adding the obsolete
versions of PC Clones to what we sup-
port. This means that you can digress
and talkabout those machines as well as
the better 6809 and other embedded
systems of which you are so familar. We
can provide support for all the older
systems (with your help Ron) that can be
Jound no where else. Over time I expect
our readership to grow as the word
spreads that this is the place to come for
real hands on support and learning in-
Jormation that can be used on any plat-
Jorm.

Thanks for not giving up completely on
the old machines Ron! Welcome again
to TCJ. Bill Kibler.

Mr. Kibler,

I am impressed with 7CJ. I recently
started publishing a Tandy Color Com-
puter, 0S-9, and OSK (0OS-9/68000)
magazine myself. So far, all is doing
very well. ““the world of 68' micros’
will support other 68xx(x) series micro-
computers and controllers and other op-
erating systems for these devices as it
BIOWS.

Enclosed you will find ad copy for 7CJ
along with payment for the first two ads.
I’ve also enclosed the latest copy of *“68’
micros’’.

Would there be any objection to my print-
ing a story about the 6809 multi-proces-
sor system? All I would like to do is print
a description (no schematics) and who
to contact for the circuit boards. I realize

The Computer Journal / #64

the boards aren’t in production, and may
not be produced... part of the reason I'd
like to run an article, to help get enough
boards to do the project. It is a little
beyond my capabilities and interests at
the moment, but some of my other read-
ers may be interested. It is possible that
085-9 could be patched to operate on
-such a system.

I enjoy classic computers a lot myself,
having my CoCos and a pair of T/S
models (ZX-81 and T/S 1500). 1 got the
CoCo after discovering what would be
involved in connecting a “‘real’’ printer
to the 1500.. I intended to use it for word
processing. After researching the home
market at the time (1984-85), I decided
the CoCo offered the most bang for the
buck and cheapest expandability. I didn’t
learn much from Tandy, but from maga-
zines and users.

Keep up the good work!
Francis G. Swygert
Editor, ‘68 ’micros”’

Thanks Francis for the copy of your
magazine. I was impressed that you have
been able to get so much going in just a
couple of issues. Your action supports
my position that it is only a period of
time before ‘‘collectible’’ computers
becomes an industry of itself.

We do not allow full reprinting of our
articles, however reviews or Synopsis
are allowed. The Z-Letter prints a re-
view in each of his issues about what
other support magazines and newsletter
have done in their last issue. Since most
of our support is by word of mouth, any
plugs we can get and give each other
will be greatly appreciated.

You will enjoy the next issue, as it is a
special on the ZX-81. I have received
lots of material on the ZX-81 andwill try
and review it all (not an easy task!) next
issue. So, welcome to TCJ as both a
reader and advertiser, not to mention a
supporter of classic systems. Bill.

Dear Bill,
I had almost decided not to renew 7CJ

- I’'m not a big Intel/Zilog/CPM fan. So
issue number 61 was going to be my last;

The Computer Journal / #64

not because the magazine wasn’t well
done or lacked meat, it just wasn’t useful
to me.

Then I picked up that issue 61, and turned
to the end of the magazine, and found
Just what the doctor ordered! Yes, yes,
yes, do it! Your ideas concerning the use
of Small-C and Forth are right on. I
suggest you use mainly Small-C because,
while I personally use Forth, most people
find it objectionable. And a Small-C
complier can probably be made to gen-
crate tighter code than Forth.

I would also encourage you not to go
overboard on picking up the pieces of
has-been publications (e.g. 68xxx Mi-
cro-Journal, et. all). Here again, I prefer
68xxx architectures, but I want to move
forward. Let’s do the Small-C tools set,
and then move to the development of an
OS that meets todays standards (real-
time, multi-threaded, multi-tasking). If
it’s done modular, with different (small)
kernels for different folks, and written in
our Small-C, it can be easily adapted to
everyone’s needs.

The critical thing in my mind is to keep
things from becoming so complex that
one person of average intelligence can
no longer get wrapped around it all.
Keep the compilers and OS reasonably
simple, and let the complexity be added
at the application level by only those
who need it.

Finally, besides your very admirable
objective of education, also be aware of
major problem areas of your readers. Oh
why oh why can I not find a supplier that
will sell me by mail order a couple
MC683xx chips? Why do I have to still
be stuck with articles that use almost two
decade old 6809 chips when 683xx are
so much more desirable? One 68306, a
couple of DRAM chips, and one EPROM
is all you need to make a fantastic sys-
tem; it even has the DRAM refresh built
in! As far as I'm concerned, finding
friendly suppliers is right at the top of
my problem list; there are many publica-
tions that help providing me with the
information I need, but getting the ma-
terials I need to make use of that info is
a serious problem. Addressing this prob-
lem is worth a monthly column in my

opinion.

Well, you did ask for our input! Seri-
ously, I very much like your suggested
new direction. I'm willing to continue
my support.

Sincerely, David F. Klink

Thanks for the support David. Actually
my search for an universal operating
system is a very old project. In consid-
ering using Small-C you had better read
the Small-C article in this issue. Those
with experience using it have made some
good comments and expressed their con-
cerns. It is beginning to look like if we
are to use Small-C some form of mullti-
pass compiling will be needed (as done
with OS-9 C compiler). I think any ma-
Jor operating system project should be
handled the same. Break the project and
the pieces into small parts for different
peaple to work on. The results too would
be in small units that can be loaded only
if needed.

My getting rights to back issues of other
magazines is just making sure they van-
ish for good. Lots of very important work
was done back then which I would hate
to see in the trash dump. Yes we are
moving forward, but looking back on the
past and building on what was done is
important. That goes for the latest 68K
chips which [think (and hope) we will
have an article about soon. Peter Stark
of SK*DOS is considering doing just
such an article, but is just not sure our
readers want it,

You correctly identified the problem with
using new chips and why Brad is using
6809s in his project. Let me say how-
ever, that the 6809 is considerably bet-
ter than most users give it credit for
being. But Brad is using it mostly be-
cause they are cheap and available. One
of my constraints on articles, is the parts
must be easily available. I have been
personally looking for a source of
68300°s with out any luck. I am sure |
could get samples, but that does our
readers little good. Since I can't find a
source I can't even determine cost. This
problem explains one of the reasons we
push using older systems for projects.
With old units, the parts are still avail-

able and inexpensive as well. Also re-
member that what you learn can be trans-
Jerred to the new systems. Like the 68306
which I know Brad would rather use if it
was easily available.

We like things simple at TCJ, and your
letter and support is greatly appreci-
ated. How about some comments on the
Small-C project from you? Thanks for
the letter! Bill.

Dear Bill,

Attached is the copy of my reply to John
Butler in London. I have a fairly exten-
sive collection of some of the older com-
puter magazines and may be able to help
out anyone looking for articles in them.

Dear John:

Noting your letter in the current issue of
T'CJ, asking for help in locating several
articles on old issues of Microsystems
and Interface Age, 1 searched my cha-
otic attic and came up with the follow-
ing:

Relocating Assemblers and Linkage
Editors: partl, Microsystems, June 1983.
Ibid., Part 2, October 1983. Ibid., Part 3,
January 1984.

Structured Programming with Microsoft
MB80 Assembler: Micro/systems Journal,
July/August 1985.

I’m enclosing photocopies of the articles,
and hope you find them useful.

I’m pretty sure I also have the issue of
Interface Age with the article you're
looking for, but so far haven’t been able
to put my hands on it. If it turns up, I’ll
copy the article and send it along to you.

With all good wishes, Norman F.
Stanley, Rockland, ME.

Thankyou for helping out John, Norman!
It is not often that I actually find out if
someone got help or not. Keeping track
of all the back issues and many of those
very important articles has actually been
suggested by a few of our readers, as
something TCJ should be doing. since
my space and time is limited, I have to

rely on people like you. So again thanks
Jor your help! Bill.

Dear Bill,

[am working on a project to put together
a public domain/shareware CD-ROM
containing articles on the subjects of
Macintosh Computer Data Acquisition
and Data Analysis to be published by the
Macintosh Scientific and Technical Us-
ers Association. The CD will be pro-
moted to the MacSciTech members
(1500), the readers of the SciTech Jour-
nal (10,000 per issue) and sold at vari-
ous MacSciTech conferences.

I am reviewing previous issues of your
publication looking for articles I'd like
to include. I will contact you later with
specific requests. Please let me know if
you are willing to grant permission for
reprints.

Would it be possible for you to give me
articles in computer-readable format? I
would prefer Macintosh text files, but I
can deal with DOS text files if neces-

sary.

You may contact Mike Duncan of
MacSciTech if you have any questions.

Gus Calabrese.

Glad to hear that your putting together
a Mac CDROM, Gus. Our CP/M
CDROM should be done about now. |
have been using CDROMs lately and
find them just wonderful. I was unable to
get more than a sample of TCJ into our
ROM. My time and amount of computer
ready data is almost non existent. I plan
to contact both previous editors and get
what ever disks they have, but for now,
I only have printed back issues and am
not about to retype them all. As far as
rights to reprint the entire article, no,
because I still sell all back issues and
they are a major reason for TCJ break-
ing even (and keeping cost down). You
can print a synopsis or review with in-
Jformation on how to get back issues
without my permission if that will help.

Please let us know how the CDROM
comes out, and thanks for supporting
TCJ. Bill Kibler.

To: B.KIBLER
Sub: news release

Could you be...

THE WORLD’S FASTEST PRO-
GRAMMER?

On March 8, 1994, the ACM Special
Interest Group on Forth (SIGForth) will
invite fifty programmers to joust with
computer and compiler, to vie for the
title of **World’s Fastest Programmer.”’
Individuals and teams will compete to
program a physical ‘‘gizmo’” in the short-
est possible time, using the computer
and language of their choice.

First held in 1988 under the auspices of
the Forth Interest Group, the World’s
Fastest Programmer contest has traveled
from California to Europe, and now ar-
rives in Phoenix, Arizona for the 1994
Symposium on Applied Computing. This
symposium is jointly held by six Special
Interest Groups of the Association for
Computing Machinery:

SIGAPP (Applied Computing)

SIGAPL (APL)

SIGBIO (Biomedical Computing)
SIGCUE (Computer Uses in Education)

SIGSMALL/PC (Personal and Small Computers)
SIGFORTH (Forth)

Now’s your chance to prove the worth of
your platform, language, or program-
ming methodology! Any computer that
supports a parallel printer can be used.
Entrants (individuals or teams) need not
be members of ACM or SIGForth, but
only fifty can compete, so register now!

REGISTRATION

The contest registration fee is $25 (U.S)),
payable to ACM SIGForth (U.S. checks
or mongy orders only, please). Send
your name, address, and a check or
money order to the contest chairman:

Brad Rodriguez

Box 77, McMaster University
1280 Main Street West

The Computer Journal / #64

Hamilton, Ontario L8S 1C0 Canada

email: BRODRIGUEZ2 on GEnie, or
b.rodriguez2@genie.geis.com on
Internet.

(U.S. entrants note: first class postage to
Canada is 40 cents!)

Forteam entrants, only one member need

register. You may register by email;
however, your registration will not be
accepted until the $25 fee is received.
Participation is limited to the first fifty
registrations received by December 31,
1993. Cancellations after December 31,
1993 will forfeit the registration fee. (The
contest organizers reserve the right to
extend the registration period at their
discretion.)

The contest will be held at the Phoenix
Civic Plaza, in conjunction with the 1994
Symposium on Applied Computing (SAC
’94) and the 1994 ACM Computer Sci-
ence Conference (CSC ’94). While in
Phoenix you may wish to attend SAC
*94. For registration information, con-
tact:

Ed Deaton, Conference Director

Department of Computer Science
Hope College

Holland, Michigan 49422 USA

email: deaton@cs.hope.edu

SAC ’94 can also provide information
on housing in Phoenix.

CONTEST RULES

The object of the contest is to solve a
real-time programming problem in the
shortest time. This problem will involve
a hardware ‘‘gizmo’’ to be controlled by
a computer. Rules:

1. Entrants may be individuals or teams.
Teams may have any number of mem-
bers.

2. The *‘gizmo’’ will be supplied by the
contest organizers at the commencement
of the contest. Only one gizmo will be
supplied to each entrant (i.e., only one
gizmo per team).

The Computer Journal / #64

3. Entrants may use any programming
language(s).

4. Entrants may use any computer(s),
and any number of computers. Entrants
must supply their own computer(s).

5. Entrants must ensure that their com-
puter has an interface suitable for the
gizmo, as follows;

a. The computer must provide 8 bits of
parallel output, and 1 bit of parallel in-
put which can be read by software (i.e.,
not an interrupt input).

b. The gizmo will use a standard
Centronics-type 36-pin female connec-
tor, and will electrically resemble a stan-
dard “IBM PC compatible’’ parallel
printer. Pins 2 through 9 on this con-
nector (DO-D7) will be the 8 data inputs
of the gizmo. The data output of the
gizmo will appear simultaneously on pins
11 (BUSY), 12 (PAPER END), and 13
(ON LINE). Ground will be pins 19
through 30. TTL levels will be used. All
other pins will be unconnected.

c. Entrants must supply their own cables.
A cable that connects the computer to a
standard parallel printer should be satis-
factory; however, it is the responsibility
of each entrant to verify that the signal
assignments given above are compatible
with their computer’s parallel port, and
to provide any necessary adapters.

d. The gizmo will not require power
from the computer.

e. The contest organizers will exercise
care in the design and construction of
the gizmo. However, the organizers
assume no responsibility for any damage
to any entrant’s computer(s), caused by
connection to the gizmo.

6. No other information about the gizmo
will be provided until the start of the
contest.

7. No information about the problem to
be solved will be provided until the start
of the contest.

9. The winner of the contest will be the
entrant who completes the assigned prob-

lem in the shortest time after the start of
the contest. Completion criteria will be
provided in the problem description; but
no entry will be deemed complete until
so pronounced by the Judges.

10. Entrants must provide their source
code to the contest organizers at the
conclusion of the contest. Entrants will
retain full rights to their work. How-
ever, by entering this contest, each en-
trant agrees to grant the contest sponsors
and contest organizers unlimited right
to use, publish, or distribute their contest
entries. (In particular, the contest orga-
nizers intend to publish the winning entry
in a suitable journal.)

11. All disputes about the interpretation
of these rules, and all other matters per-
taining to this contest, will be decided by
contest judge(s) to be named by the con-
test organizers. The decision of the
Jjudge(s) will be final.

12. Participation will be limited to the
first fifty (50) entrants whose applica-
tions are received by 31 December 1993.

=END=

Thanks for the notice Brad. I was unable
to attend the gizmo contests, but one of
our local Forth members did. He said it
was just great to watch how all the dif-
Jerent teams worked. He really learned
a lot and enjoyed himself as well. The
next couple of Forth meeting we had our
own mini-contests as we all brought one
item or another. I had a stepper motor
driven by 68HC11 using Forth. The
object was how little code was needed to
make it move to any given location. Was
simply fun and livened up the meeting.

Now Brad, I expect to get an article
Jrom you on this, correct? Bill.

Dear Bill,

Please change my address to......

Note that Sound Potentials, which used
to distribute a collection of public do-
main CP/M software, is no longer in
business. The software collection was
acquired by Lambda Software Publish-

ing, i.c. Mr. David A.J. McGlone, who
publishes the Z-Letter, and remains avail-
able from him.

I have subscribed to TC.J since issue #48,
primarily for articles relating to CP/M
and Z-Systems. My CP/M systems in-
clude a hopped-up Kaypro 4-84, which

. hasa 1 MB Advent RAM disk, two quad
density drives (782K) and one double
density drive. I also own two Epson PX-
8 Geneva CP/M portable computers with
the wedge attachments for extra RAM. [
now frequently use an 80386DX-40 Mhz
IBM Clong, on which I run a registered
version of MYZ80. This makes a high
performance CP/M system, especially
when running ZCPR34. I would be in-
terested in any information or articles
concerning MYZ80.

My wife, Diana, has been promoted in
her company, hence our move to Rich-
mond. I will seek computer program-
ming work there. I recently completed a
B.S. degree in Computer Information
Systems from Regents College, 1450
Western Ave., Albany NY 12203-3524.
This is a fully-accredited program of the
University of the State of New York that
can be completed without ever going to
Albany or even to New York State. If
any TCJ reader has been contemplating
a B.S. in computing, I recommend this

" ‘“‘distance learning’’ program. If you
have any existing college credits, they
can be applied to the program. I already
had a B.A. degree with a freshman year
that was filled with engineering courses.
I was able to complete the B.S. degree in
one year by taking seven courses plus
G.RE. in Computer Science. The Com-
puter Information systems degree differs
slightly from a standard Computer Sci-
ence degree in that the mathematics re-
quirement is a bit lower, and there are
additional requirements for Systems
Analysis and Design, and Database
Management Systems.

Very truly yours, Richard E. Brewster.

Thanks for the information Richard. 1
had seen in The Z-Letter that you had
transferred Sound Potential’s software
to David. David is doing well in his new
FEugene location.

It looks like you have a good assortment
of CP/M systems. Yes, MYZ80 is great,
especially running ZCPR. We have only
had one past article on it, but would love
to see more!

The degree idea sounds great and hope-
Jully some of our readers will give them
a ring to find out more. Thanks. Bill.

Dear Bill:

Re: Superbrain Hard Disk Boards, Sche-
matics, ETC.

I was pleased to have a chat with you a
couple of days ago when I phoned to
commence my first subscription to 7CJ.

I use Intertec Superbrains and, unlike
most people, do not use an MSDOS, or
any other, computer. The Superbrains
are very heavily used for DBASE 11
programmes for agricultural research,
for word processing with Magic Wand/
Peachtrext, and to a lesser extent for
computer communications. Some day
when time permits, I will be converting
a number of BASIC statistical
programmes I wrote for the Hewlett-
Packard 9830 to run under MBASIC on
the Superbrains. I have just bought Z-
SYSTEM and am struggling to install it.

Tuse CMC controller and interface boards
to run two 10 MB Hard disks on the
Superbrain, each configured as two logi-
cal disks with 1024 directory entries.

Since losing one of my hard disk con-
troller boards when my hard drive power
supply blew up, my major problem has
been one of trying to find a good spare
CMC controller board or two. So far I
have had no luck.

The CMC boards I am looking for were
originally used with CMC OEM
Superbrains called “Super Five”’, *‘Su-
per Ten’’, or “‘Super 20°’ and were also
used to upgrade many factory standard
Superbrains and Compustars.

The CMC controller board set consisted
of 2 boards, usually green. Both bore the
trade name ‘“‘act’”’. The smaller board

also said ‘*“HOP-8’’. The larger board
said “‘5MSDC”’ and, immediately be-
neath, ““REV-3"".

I am also interested in Superbrain (or
Compustar) boards and accessories of
all kind, schematics for the CMC hard
drive boards, schematics for a Superbrain
II, information for adding IDE hard
disks, adding a parallel port, etc. for the
Superbrain.

If anyone knows of available CMC or
Superbrain boards (or the whole hard
drive unit or computer), or has informa-
tion regarding any of the above, I would
appreciate being informed. 1 can be
reached as follows: .

Brian Murphy, Fidonet 1:153/151, or
12521 Cathy Cr, RR#7, Mission, B>C>
V2V 6HS, Canada. Call (604) 462-7057.

I am eagerly looking forward to a year of
receiving T7CJ.

Sincerely yours, Brain C. Murphy.

OK Brain, I can help for many of what
you need.] have several Superbrain sche-
matics and a whole Superbrain QD with
parallel port. 1did the parallel port some
time ago and wrote an article in issue
#32 as part of my Computer Corner.
One problem with my 10 years of
Corner’s is that they are not indexed by
topic. 1 did several projects and have to
thumb through them to find which issue
the discussion is in. I guess that is a
good reason to just have all of the back
issues. I never seem to be amazed at
what [find while looking for something
else.

1 had intended on keeping the Superbrain,
but lately I am a bit over loaded and
might consider selling it. How much and
then how to get it to Canada is another
problem. Lets hope you can find help a
bit more locally. As for hard drives sup-
port I have none, either drives or sup-
port. Let us know if you find help how-
ever.

Thanks for still using classic machine!
Bill Kibler.

The Computer Journal / #64

Dear Bill:

Enclosed is my check in the amount of
$44.00 to renew my subscription for
another two years. though my ““EXP”’ is
65, I am renewing early to avoid any
chance of missing an issue.

I am operating under TurboDos in an
S100 configuration. My system is pres-
ently set up for eight users and three
printers. TurboDos could handle sixteen
of each. Would you be interested in an
article about this alternate CPM
multiuser, multifunctioning system? I
may even have schematics on my Teletek
and Earth boards.

Sincerely, Rosenthal & Associates PC,
Harold Rosenthal.

Yes and thanks Harold. I wish more
people would renew on their own early.
Early renewal saves me money and time
which I have so little of these days. As
Jor an article on TurboDos a big YES. I
once worked for Teletek and had chance
to use TurboDos before I left. Their
multiuser systems were the best, unfor-
tunately I can’t say same for the man-
agement. What made them so great was
the single CPU for each user, something
the MSDOS folks haven’t learned about
yet. So hopefully you can do an article
and explain what I just said to our read-
ers! Thanks again. Bill Kibler.

Dear Mr. Kibler,

Enclosed please find my renewal for
another year.

I run CP/M 2.2 on an Apple//e
(unenhanced) (Microsoft Softcard) and
also CP/M 3.0 using Digital Research
Goldcard. I also use MSDOS Clones at
home and at work.

It never ceases to amaze me that each
new version of a program requires a
doubling of the amount of disk space
and a 50% increase in the amount of
RAM required for an almost function-
ally equivalent program. A program that
used to require 48K of RAM and fit on
a single-sided, double-density disk (not
compressed) now comes on 8 highly
compressed high density disks and re-

The Computer Journal / #64

quires 20 megabytes on a hard drive
when installed. I realize that memory is
relatively cheap now and that CPUs and
hatd disks are faster, but this increase in
space and requirements offends my aes-
thetics.

Do you know of a source of CP/M soft-
ware on 5 1/4 inch Apple Softcard for-
matted disks? All the references to CP/
M software seems to be for Kaypro and
Radio Shack computers and this cuts out
many of the ““old-timers’” who have the
Apple - Softcard configuration. Does the
software you distribute come in this for-
mat?

Thank you for your assistance.
Sincerely, Jim Moore.

Thanks for the renewal Jim. Lambda
Software I believe can copy software
onto that format for you. In fact David
Jjust told me he is becoming the Borland
CP/M software distributor. So he may
soon have all versions of Borland CP/M
software for your system. He also has
the Z-Letter which might be a help for
you. Give him a call, his number is on
the back page.

You also correctly mentioned one of the
reasons I am thinking about giving up
MSDOS systems and going back to CP/
M full time. Of course one doesn’t have
to get the latest, but I usually find that
I hope the newest version will have all
the bugs I found fixed. Unfortunately
that usually is not the case. In adding all
those new features, they miss some of
the old bugs and put in many more new
ones. Seems you can’t win, so why join
them. Use CP/M software that works
and has all the bugs worked out of it!

Thanks for your interest in TCJ and CF/ |

M1 Bill Kibler.

Embeddlng Operauons n OM and”;-

;_Shon reports on pro -
currently under way, belong in our

Articles Nededed

We need articles on sub}é‘cté ‘thot
are of interests to our readers. Those
eight bit systems, through the obso-
lete IBM PC/XT style of comput-
ers.. . o T

The subject matter of interest are
mostly those which explain and
teach readers how to perform inter-
mediate and advanced improve- .
ments and modifications to- their -
systems,

~ All of TCI's readers are not inter-
mediate in skill, many are begin-

niers, Articles need totake any reader
of any skill level _through your
project, as if they were begmmg on

this sub]ect for the ﬁrst time.

- Areas of current mtcrest arc usmg:

. older and obsolete systems for new
embedded comrol sxtuanons :

| would bea great artxcle of mterest : -
to our. readers : o

: 'early and classu: systems is always
a toplc which our readers enjoy

 Projects whxch use surplus parts
- available from current vendors, -

 showing how to debug and develop
| the needed knowledge of the usedfi ;
 system, is something of interest to -
g our readers and advemzers as wel -

" Support Groups section, where let-
 ting others know of what is being
done has beoome a major ocus -

Send your letters to:

The C‘omputern.laumal o
P.O. Box 535
Lincoln, CA 95648-0535

| - SUPPORT GROUPS FOR THE CLASSICS

By JW Weaver

Well here it is, another issue due, and par for the course, I’'m
in a mad rush to get this article ready for Bill.

On my request for help with information and/or history of
computer companies, I've received a response from a fellow in
Iowa, with information concerning the Morrow system. Did
not know that Morrow produced so many variations. I thank
the gentleman for his letter, and hope to include a bit of this
information in the next column.

Had some suggestions from Tilmann Reh and Bill Kibler
towards changing the direction of this column. Will try to
include their suggestions, and if you the reader have any
suggestions for improvements or other directions or subjects,
you would like to see covered, please drop me a note.

I Would like to include within this column, projects that
readers are doing for the classics, information on these projects,
if these projects will be available to other readers, or if your
project might need some help. Firmly belive that there are
readers with projects, un-aware that other readers would like
to become involved, might like to duplicate it, or might like
to aquire kit / finished product.

With the onset of winter, my outdoor time will be dwindling,
that means I will have more time to put in on a few of my own
projects. One of these projects, is designing a replacement
board for my Kaypro, basicaly a Z181 processor with a SCSI
interface, higher speed serial ports, hopefully support for 8"
floppy (external of course), 1.2 meg, 1.44 meg as well as the
orignal formats. Another project is designing a simple but
fuctional computer, built from mostly descrete logic, to aid in
teaching my two young daughters, fundamentals of soldering
and testing circuit boards, and the concepts of computers, how
they work, and how to program.

Well enoght of my rambling, Need to wrap this up and post
to BBS for Bill K.

An after note, any persons trying to contact me, via my BBS,
in the last 3 weeks of October, 1 must apologize, when I
replaced the crashed hard drive, I also changed the BBS soft-
ware, and due to my NOT thoroughly wringing out the pack-
age, I overlooked a few options which placed the BBS into
some strange modes. Sometimes not anwersing incoming

10

calls, sometimes anwersing but not allowing access. Please try
again, Hopefully I have corrected the problems.

Keep Hacking.

Contact by US Mail:
TCJ Support Groups
Drawer 180

Volcano, California

Contact by BBS:
(916) 4279038
up to 2400 baud 8 bits N parity 1 stop

TCJ Staff Contacts

TCJ Editor:

Bill D. Kibler, PO Box 535, Lincoln, CA 95648, (916)645-1670,
GEnie: B.XKibler, CompuServe: 71563,2243, E-mail:
B Kibler@Genie.geis.com.

Z-System Support:

Jay Sage, 1435 Centre St. Newton Centre, MA 02159-2469, (617)965-
3552, BBS: (617)965-7259(pw=DDT), MABOS on PC-Pursuit, E-
mail: Sage@ll.mit.edu. Also sells Z-System software, see inside
front cover.

32Bit Support:
Rick Rodman, BBS:(703)330-9049
rickr@virtech. vti.com.

(eves), E-mail:

Kaypro Support:
Charles Stafford, 4000 Norris Ave., Sacramento, CA 95821, (916)483-
0312 (eves). Also sells Kaypro upgrades, see ad inside back cover.

S-100 Support:
Herb Johnson, CN 5256 #105, Princeton, NJ 08543, (609)771-1503.
Also sells used S-100 boards and systems, see inside back cover.

6809 Support:
Ronald Anderson, 3540 Sturbridge Ct., Ann Arbor, MI 48105.

Users Groups and Project Reports:
JW Weaver, Drawer 180, Volcano, CA 95689, BBS: (916)427-9038.

Regular Contributors:

Brad Rodriguez,Box 77, McMaster Univ., 1280 Main St. West,
Hamilton, ONT, 1L.8S 1C0, Canada, Genie: B.Rodriguez2, E-mail:
b.rodriguez2@genie. geis.com.

The Computer Journal / #63

Frank Sergeant, 809 W. San Antonio St., San Marcos, TX 78666, E-
mail: f507675@academia.swt.edu.

Tilmann Reh, Germany, E-mail: tilmann reh@hrz.uni-siegen.d400.de.
Has complete MS-DOS disk emulation program for CP/M+, contact
Jay Sage.

USER GROUPS

Older systems:

Connecticut CP/M Users Group, contact Stephen Griswold, PO Box
74, Canton CT 06019-0074, BBS: (203)65-1100. Sponsors East
Coast Z-fests.

Sacramento Microcomputer Users Group, PO Box 161513, Sacra-
mento, CA 95816-1513, BBS: (916)372-3646. Publishes newsletter,
$15.00 membership, normal meeting is first Thursday at SMUD
6201 S st., Sacramento CA.

Coleco ADAM:

ADAM-Link User’s Group, Salt Lake City, Utah, BBS: (801)484-
5114. Supporting Coleco ADAM machines, with Newsletter and
BBS.

Adam International Media, Adam’s House, Route 2, Box 2756,
1829-1 County Rd. 130, Pearland TX 77581-9503, (713)482-5040.
Contact Terry R. Fowler for information.

AUGER, Emerald Coast ADAM Users Group, PO Box 4934, Fort
Walton Beach FL 32549-4934, (904)244-1516. Contact Norman J.
Deere, treasurer and editor for pricing and newsletter information.

MOAUG, Metro Orlando Adam Users Group, Contact James Poulin,
1146 Manatee Dr. Rockledge FL 32955, (407)631-0958.

Metro Toronto Adam Group, Box 165, 260 Adelaide St. E., Toronto,
ONT MSA INO, Canada, (416)424-1352.

Omaha ADAM Users Club, Contact Norman R. Castro, 809 W. 33rd
Ave. Bellevue NE 68005, (402)2914405. Suppose to be oldest
ADAM group.

0S-9 Support:
San Diego OS-9 Users Group, Contact Warren Hrach (619)221-
8246, BBS: (619)224-4878.

Atari Support:

ACCESS, PO Box 1354, Sacramento, CA 95812, Contact Bob
Drews (916)423-1573. Meets first Thurdays at SMUD 59Th St. (ed.
bldg.).

Forth Support:

Forth Interest Group, PO Box 2154, Oakland CA 94621 510-89-
FORTH. International support of the Forth language. Contact for list
of local chapters.

OTHER PUBLICATIONS

The Z-Letter, supporting Z-System and CP/M users. David AJ.
McGlone, Lambda Software Publishing, 149 West Hillard Lane,
Eugene, OR 97404-3057, (503)688-3563. Bi-Monthly user oriented
newsletter (20 pages+). Also sells CP/M Boot disks, software, and
new versions of Borland CP/M software.

The Computer Journal / #63

The Analytical Engine, by the Computer History Association of
California, 1001 Elm Ct. El Cerrito, CA 94530-2602. A ASCII text
file distributed by Internet, issue #1 was July 1993. E-mail:
kcrosby@crayola.win.net.

Z-100 LifeLine, Paul F. Herman Inc., 9317 Amazon Drive, New Port
Richey FL 34655, (800)346-2152. Publication and products for Z-
100 and S-100 machines.

The Staunch 8/89 ‘er, Kirk L. Thompson editor, PO Box 548, West
Branch [A 52358, (319)643-7136. $15/yr(US) publication for H-8/
89s.

Sanyo PC Hackers Newsletter, Victor R. Frank editor, 12450 Sky-
line Blvd. Woodside, CA 940624341, (415)851-7031. Support for
orphaned Sanyo computers and software.

the world of 68’ micros, by FARNA Systems, PO Box 321, Warner
Robins, GA 31099-0321. E-mail: dsrtfox@delphi.com. New maga-
zine for support of old CoCo’s and other 68xx(x) systems.

Amstrad PCW SIG, newsletter by Al Warsh, 2751 Reche Cyn Rd.
#93, Colton, CA 92324. $9 for 6 bi-monthly newsletters on Amstrad
CP/M machines.

Other Support Businesses

Sydex, PO Box 5700, Eugene OR 97405, (503)683-6033. Sells
several CP/M programs for use with PC Clones (*22Disk' format/
copies CP/M disks using PC files system).

Elliam Associates, PO Box 2664, Atascadero CA 93423, (805)466-
8440. Sells CP/M user group disks and Amstrad PCW products. See
ad inside back cover.

Davidge Corp. 94 Commerce Dr. PO Box 1869, Buellton CA 93427,
(805)688-9598. 780 support of Davidge and Ampro Z80 Little
Board.

Star Technology, 900 Road 170, Carbondale CO, 81623. Epson QX-
10 support and repairs. New units also avialble.

Star-K Software Systems Corp. PO Box 209, Mt. Kisco, NY 10549,
(914)241-0287, BBS: (914)241-3307. 6809/68000 operating system
and software. Some educational products, call for catalog.

Peripheral Technology, 1480 Terrell Mill Rd. #870, Marietta, GA
30067, (404)973-2156. 6809/68000 single board system. 68K ISA
bus compatible system. See inside front cover.

Hazelwood Computers, RR#1, Box 36, Hwy 94@Bluffton, Rhineland,
MO 65069, (314)236-4372. Some SS-50 6809 boards and new
68000 systems.

AAA Chicago Computers, Jerry Koppel, (708)202-0150. 8S-50 6809
boards and systems. Very limited quanity, call for information.

1

Mr. Kaypro

By Charles B. Stafford

THE NATURE OF THE BEAST

Wherein we digress from the transmogrification of a mouse
into a Lion, to acknowledge the existance of (gasp) the ‘‘uni-
versal’’ mother-board and use the dreaded DDT.

MEA CULPAs

When we did the 2 MHz (did I get it right, Lee ?) to 5 MHz
speed-up, somehow a digit was dropped when specifying the
clock divider chip. It was labeled as a 741529 but should have
been 74L.S293. To those of you who have been sweating blood
trying to find one (See it says right here 74LS29), I apologize.
You should have better luck finding a 74LS293.

MUSINGS

There is something insidious about summertime, It may be the
gentle breezes wafting in from the delta, or it may be the
temperature, but invariably toward the end, visions of sailing
and surfing push all other thoughts into the far distant back-
ground, from whence they return only after the first rains, or
the first chilly (below 60 degrees) evening. Sometimes sanity
follows, but only on occasion. During one of these dream
sequences an 84 Kaypro owner asked,”’Can we speed up the
84s like the 83s 7°° A great voice sounded through the mists
“‘perhaps.”’

Several hours later, while investigation of the proposition pro-
ceeded, the answer changed to ‘‘probably’’. The entire se-
quence reminded me that the world of CP/M Kaypros consists
not only of 83 K-IIs and K-4s but also of K-10s and those
machines using the ‘‘universal motherboard”’, i.e. all the 84s.
So far, this series has neglected those late model machines, but
NO MORE. Herein we will look at fixing the clock on those
that have it installed, and installing it on those that don’t.

THE LONG AWAITED TRom decoder board

Sorry, this is only an update. The layout of the printed circuit
board is finished and the prototypes ars being etched, I am told.
If they are not available in time for the next issue, we will build
one from scratch, using a piece of perf board with solder pads
on both sides and through-plated holes. It works well, but point
to point wiring is never as neat as printed circuits.

12

*“THIS COMPUTER WAS STOLEN FROM ...”
Customizing your sign-on message or
“‘here comes the dreaded DDT.”

When I started using a UNIX variant, I was introduced to the
Vi editor, which is even more convoluted and user-unfriendly
than Ed or the infamous Edlin. I did learn to use it, however,
because there was nothing else that would do the same job, i.c.
imbed executable control and escape characters in executable
scripts.

The same is true of DDT, nothing else will quite do the job that
DDT will. Having said that, I will admit the existance of
NDDT, a variation that does more, but the underlying operat-
ing scheme is the same. Here we will just use the D(isplay) and
the S(et) functions to alter the CP/M sign-on message.

Here’s what you’ll need; one bootable diskette, with
MOVCPM.COM
DDT.COM and
SYSGEN.COM, all on the diskette,
another formatted diskette,
and an ASCII table.

For those of you who use the TurboRom, you’ll need the
analogous programs, and those required by them. MOVTURBO,
for instance requires the original MOVCPM.COM and the
BIOS file, refer to your TurboRom manual for the exact re-
quiremeris.

Here’s how we do it:

1. Turn on your computer, and watch it boot up, preferably
from the diskette, and write down the exact sign-on message
that appears on the screen. It will be something like ‘‘Kaypro
CP/M 2.2d” or *‘61.00K CP/M - TURBO-BIOS”’.

2. Use MOVCPM to create an image of the operating system
on diskette. To do this, issue the command MOVCPM xx.xx
where xx.xx represents a number between 55.00 and 64.00
which will be the resulting size of the TPA. (Transient Pro-
gram Area, where all those neat programs reside and run)
Movcpm will exit with an admonition to save the resulting
system by issuing the command; ‘‘SAVE 36 CP/Mxxxx.sys’,
so do it. For those of you running the TurboRom, Movturbo

The Computer Journal / #64

is the analogous command and it saves the new system all by
itself.

3. Now call DDT and the new system into memory with the
command: DDT CP/Mxxxx.sys (or DDT Turbxxxx.sys as
appropriate). DDT will sign-on with a message and then give
youa ‘‘-”* prompt on the next line. Give the command “‘d’” and
DDT will display the first 16 lines of memory beginning at
-location 100h, the bottom of the TPA.

The display will look something like figure 1, with the ad-
dresses matrixed on the left side and the top line, and
hexidecimal values in the field. There will also be a column of
ascii equivalents on the right side.

-d0900

0000 18FE80C2 80C23300 1A073536 2E30304B ... 3...56.00K
0910 2043502F 4D202D20 54555242 4F2D4249 CP/M-TURBO-BI
0920 4F532420 20202020 20202020 203418B3 OS$ 4.
0930 17281902 17F317D2 O0B1FF60 00000000 .+..'.

0840 06321906 32190632 19063219 07020700 2222

0850 00050814 06440613 O0BE10605 O0BEBO6O1 . .D..

0960 06000805 OE140E44 OE130EEt OEOS0EEB ... D...

0970 OEQ10EO0 ODOAS761 726D2042 6F6F7424 .. WarmBoot$
0980 3180C221 FS8FFESAF 06088623 10F8182A 1.l..#."

0990 27 11A0C2 OB031ABE 201E2313 10F8182A . #.°

09A0 505053 1A 07526571 75607265 73205455 PPS.Requires TU
09B0 52424F 20 524F4D21 21 A3C206 154E23ES RBO ROMIL N#
09CO0 C5CD4500 C1E110F5 F3760E00 1EQ1CDOF .E..v..

D5SDDEt2A FOFF7CED .. .MV.*.\
DB732372 3AFBFFO7
EBF1F53E O0B30023E ..L..>0

09D0 00110800 18 5E 2356
09E0 47 EDSEDD 754F 11 DO
09F0 F5DDESE1 114C0019

Figure 1

Successive ‘‘d’’s will display successive 16 line groups of
hexidecimal numbers (the contents of memory) with the ascii
equivalents on the right side of the screen. Continue to scan
through the memory using the ‘‘d’ command until you see the
same message, on the right side in the ascii equivalents col-
umn, that you carefully wrote down when the machine booted

up.

4. Count over from the left side of the right column to the first
character of the sign-on message, and then count over the same
number on the address line at the top of the display. Combining
the number that you landed on at the top of the display with the
line number that the sign-on message started on will give you
the starting address of the sign-on message. For instance 07A0
+05 =07AS5. Write down the address you came up with. Count
the number of characters in the sign-on message, and you can
include trailing spaces, 20h, and write this number down. This
is the time to figure out what you want your new sign-on
message to be. You can use the same number of characters as
the last number you wrote down. When you have your new
message figured out proceed to step 5.

5. Using the S(et) command move to the starting address of
the old sign-on message. You can do this by issuing the
command *‘sxxxx’’ where the xxxx represents the address we
calculated two paragraphs ago. For instance, using the address
above the command would be s07A5. This will give you a
numeric prompt, indicating the memory location and its con-
tents. Using your ASCII table, translate the first character of

The Computer Journal / #64

the new sign-on message to a hex(idecimal) number and enter
it with a return. The display will reflect the change and the
prompt will change to the next memory location. Continue
entering your new message in hex and when you finish enter
a period(.). If you made a “‘misteak’’ enter the *‘s’’ command
again with the appropriate address and fix it, entering a period
when your finished.

6. To exit DDT, use a ~C (control C) and then issue the
command ‘‘SAVE 36 NEWCPM.SYS’’. This writes the first
36 pages of memory beginning at 0100h to disk, in a file called
“NEWCPM.SYS”’. Now all we have to do is install your new
CP/M on the boot tracks of a diskette.

7. Issue the command SYSGEN NEWCPM.SYS and the
response, after much whirring and clicking will be; ‘ Enter
destination drive or return to reboot’’. Type in the letter of the
drive where you have a formatted diskette and press “‘return’’,
and follow the prompts. I usually write the system to the disk
twice, just to make sure.

Those who use a TurboRom would use TURBOGEN instead of
SYSGEN, and the commands are otherwise the same. Now put
the newly ‘‘sysgened’’ diskette in the ‘“°A’’ drive and reboot to
see your new handiwork.

A SMALL CAVEAT

Some times the original system file that you generated with
MOVCPM will have what looks like a sign-on message in
several places, because several different people wrote parts of
the “‘loader’’ routine. If you don’t use the right place the first
time, just go back to the beginning (step 1) and look further.
You won’t do any permanent damage, because we just modi-
fied a copy of the original file, and floppy boot tracks can be
rewritten many times.

THE CASE OF THE MISSING HOURGLASS, or in
this case real-time clock

All of the socalled ‘*Universal mother boards”’ are configured
for a real-time clock, and a modem. Some even had them
installed. For those that still lack them, there is good news and
mediocre news. The mediocre news is that the on-board mo-
dem was a 300 baud device, and you’re better off without it,
because now you can use an outboard (‘“‘external’’ for you
HCWs (Highly Certified Wizards)) modem in your choice of
speeds, at least insofar as your pocketbook will allow. The good
news is that it’s relatively easy to find AND INSTALL the
pieces necessary to make the on-board clock operational.

For those who already have the clock installed, read on, during
this adventure we will also track down and destroy the entomo-
logical cybernoid that runs around resetting these clocks to
random times.

13

“THE INSTALLATION”’

BITS & PIECES

40 pin socket

24 pin socket

24 pin component carrier
Z80A-PIO parallel input output chip
MMS8167A clock chip

32.768 KHz crystal

1N4148 diodes (2)

100K ohm resistor 1/8th watt (1/4 watt will do fine)
1uF dipped tantalum capacitor
0.1 uF disk capacitor

22 pF disk capacitors (2)

3 volt battery and holder

INTO THE OPERATING ROOM

A quick note for us neophytes before we get elbow deep in the
machine. (You HCWs can skip this part.) The holes at loca-
tions Y4, U35, U36, CR6, CR7, C54, C64, and C65 are almost
certainly filled with solder, for two reasons, 1. MURPHY, and
2. the mother-board is *‘wave-soldered’” during assembly and
everything that can be gets soldered. SO we need to clean out
the holes at those locations. You can use either a “‘solder
sucker’’ as described in a previous project or the ‘‘soldering
iron and toothpick’’ method wherein the hole is heated mo-
mentarily with the iron and the toothpick is plunged into the
hole immediately. This method is tough on toothpicks, so you
might want to have several on hand before you start.

Another quick note, this time on the battery. A batiery is a
battery, right ? Well, maybe, the original installation used a
lithium cell about the size of a triple-A cell, and a lot of folks
have used both lithium and silver button cells and holders very
effectively. The current drain is small, mostly when the com-
puter is off, and there is a recharging circuit on the board for

the battery (CR6 & CR?7). Because I couldn’t find an appropri- -

ately sized battery holder within a reasonable time,(the true
meaning of reasonable can only be found with a friend at the
bottom of a bottle of very good wine), I used a holder from
Radio Shack, which holds 2 AA alkaline cells (which should
last almost forever) and has a pigtail (2 wires) to which I
soldered 2 femaleconnectors (1 each). I also soldered 2 single
pin connectors into the board at BT1, and used double stick
foam tape to attach the battery holder to the side of the drive
cage beneath the motherboard. Next time I remove the mother-
board, I'll just have to unplug the *‘battery cables™.

HERE WE GO

The Z80A-PIO goes in at U35. If there isn’t already a socket
there, (there wasn’t on my motherboard) I'd solder in a 40 pin
socket first. The two diodes go in at CR6 and CR7, the polarity
is marked on the motherboard, just match up the arrows on the
diodes with the symbol silk-screened at the location. The
crystal should be CAREFULLY soldered in at Y4, and the 0.1
uF disk capacitor is installed at C54. The remaining 2 disk
capacitors are for C64 and C65, and the battery is put at BT1.

14

The clock chip goes in at U36. [also put a socket there and then
plugged in the chip.

TAKE NOTE

This is where you can cure or prevent the random resets. Pin
23 of the clock chip is the Power-on signal and was originally
tied high directly. There has been some speculation that the
high transient appearing here on power-up has been acting as
a “‘reset signal’’ indicating that some buffering is needed.
That notion is further reinforced by the experiences of others
who have retrofitted clocks. Borrowing from power supply
theory, an inline resistor (analogous to a choke) and a capacitor
to ground (analagous to a filter capacitor) would seem to be
called for. A 100k ohm resistor and a 1 uF dipped tantalum
capacitor appear to be appropriate, and in fact do the job very
well. Advent Products had another solution, involving a volt-
age regulator circuit using a transistor and a zener diode, but
this is far more cost effective.

The “‘universal’” mother-board is not really universal, it would
appear. The K-2x has an 81-295 and the 84 K-4 and K-4x have
an 81 184/5 depending on whether you believe the schematics
or the sticker on the mother-board. The difference is that the
81-295 has pin 23 tied directly high and the 81-184/5 does it
through a 1 k ohm resistor (R53) with a 47 uF capacitor to
ground (C87). It further appears that on the 81-184/5 the
resistor (R53) is bypassed by a trace. In either case, the
following assembly will work.

Find the 24 pin component carrier and solder one end of the
100k ohm resistor to the saddle above pin 23, with the resistor
itself lying on the carrier between the rows of saddles, slip a
small piece of insulation on the other lead and dress it along-
side the resistor so that it returns to the pin 23 location. In a
similar manner, lay the 1 uF capacitor between the rows of
saddles, so that its leads can be run to the saddles above pins
23 and 12, with the negative lead soldered at pin 12 which is
ground. Now place the MM58167A IC on top of the carrier
and solder all legs to the carrier EXCEPT pin 23. Bend out pin
23 and solder the remaining resistor and capacitor leads to it.

In the past JDR Microdevices in Los Gatos CA has had all the
necessary parts for the clock retrofit into ‘‘universal’’ mother-
board.

PREVIEWS

Next time we meet we will build a Personality-Decoder board
from the ground up, and the following time we’ll address the
’84 video ideosyncracies. Unfortunately, I am not on
Compuserve yet, nor am I reachable on Internet, so “‘snail-
mail’’ or landline will have to do. I can be reached through T7CJ
or at 4000 Norris Avenue, Sacramento, CA 95821.

The Computer Journal / #64

The Z-System Corner
By Jay Sage

~ RegularFeature

Techniques for Running Unattended

Part 2:
The PMATE Analysis Macros

In my previous column I presented the
control scripts 1 developed to allow my
DOS computer to run a sequence of tasks
unattended over a long period of time,
during which the computer might have
to be rebooted. As I mentioned, I used
that approach to carry out a large set of
complex electronic circuit simulations
while I was on vacation for nearly a
month. Although several problems did,
indeed, arise and require rebooting of
the computer, the computer was able to
pick up quite nicely each time where it
had left off, and a large volume of useful
results awaited me on my return.

What I described last time was the addi-
tions to the AUTOEXEC.BAT file that
allow a general set of commands to be
run in a fail-safe mode. This time I will
describe the PMATE (or ZMATE) edi-
tor macros that made it possible for my
specific circuit analysis tasks to be per-
formed with some ‘‘machine intelli-
gence’’ (that seems to be a newer term
for what used to be called artificial intel-
ligence). Specifically, a set of control
programs analyzed the results of the
simulations and adjusted a circuit pa-
rameter automatically to determine the
margins, that is, the range over which
the circuit would function properly. Next
time, in the third installment, I will de-
scribe the glue scripts that held the whole
operation together.

The Extension to DESQview

Before getting into the main subject
matter, I would like to make one addi-

The Computer Journal / #64

tion to the discussion in the previous
column. I am a great fan of DESQview,
a DOS multitasker that is in the spirit of
Bridger Mitchell’s BackGrounder-ii un-
der CP/M. It is, naturally, much more
sophisticated and elaborate, but I use it
mainly the way I use BGii, to switch
between tasks. It is handy to operate my
fail-safe system under DESQview so that
someone can pop into another window
to examine logs of system activity or the
results-to-date.

To boot up in DESQview, I add the
command “DV”’ to my
AUTOEXEC.BAT file. Then I need a
way to get DESQview to operate in a
fail-safe start-up mode. To accomplish
that, I define a special DESQview key-
stroke macro -- the one that DESQview
runs when it first loads -- as follows:

{Leamn ! <“!DV Startup”’}
{Enter}

fs

{Finish}

This is the text form of the definition.
DESQview has a utility to convert be-
tween the text form and an executable
form. Even if you don’t know
DESQview, you can probably guess that
this launches the DESQview task iden-
tified by the letter pair FS (all DESQview
tasks have two-character IDs). The FS
task is set up to run the command
FAILDV.BTM, the dummy version of
which is shown in Listing 1. It is basi-
cally the same as the dummy
FAILSAFE.BTM that we described last
time.

Text Analysis and Automation Using
PMATE

We now turn to the main subject of this
column: the use of PMATE (or ZMATE)

to carry out an analysis of text that can
be used to control an automated process.
The complex set of commands that car-
ries out the simulation of my electronic
circuit will be described next time. For
now I will show only the core set of
commands where the simulation and the
analysis of the results take place. The
following are the two essential com-
mands:;

c:\pspice'pspicel exe alexsrl.cir alexsr].out
edit $ b9e xi alexsrl.mat § .9

The first command invokes the PSPICE
circuit simulator on the circuit defined
by the file ALEXSR1.CIR and writes the
output to the file ALEXSR1.OUT. The
second command invokes PMATE,
which I have renamed to EDIT, with a
command line that runs a MATE macro.

The macro command passed in the com-
mand tail first switches to edit buffer 9
(b9¢), then reads in the file
ALEXSRI.MAT (xi), and finally ex-
ecutes the contents of ALEXSRI.MAT
as a macro (.9). Obviously, we have to
look at ALEXSR1.MAT to see what
really goes on. It is shown in Listing 2.
Let’s start with an overview of what the
macro does and why.

This macro will examine the circuit
simulator’s output listing, which includes
a table of voltages at various points in
the circuit at various times, and deter-
mine whether the circuit functioned prop-
erly. But how can PMATE then convey
this information to the world outside
PMATE, namely to the batch file that
invoked PMATE and has to decide what
to do next?

If PMATE could write to environment
variables, that would be a very -good

15

way, but PMATE cannot do that. Under
Z-System we might use ZMATE’s abil-
ity to poke values into absolute memory
addresses and then use ARUNZ’s ability
to paste the contents of memory into a
command script to get the result. Fid-
dling with memory is not such an easy or
safe thing to do under MS-DOS, because
one can never be sure of the absolute
address at which a program will be
loaded. For that matter, it’s probably
not such a smart thing to do in CP/M
cither.

A really sophisticated method would be
to have PMATE compose the text of a
BTM file and write it out to disk. The
master script that invoked PMATE could
follow that command with the invoca-
tion of the script to be created by PMATE.
I have done things like that on occasion,
but I chose a simpler approach here. 1
just made PMATE create a file with a
particular name to serve as a flag or
semaphore. One file indicates that the
circuit functioned properly, another in-
dicates that the circuit failed, and a third
signals some kind of error in the analy-
sis. The controlling BTM script need
only test for the existence of these files.

Now let’ turn to the details of the macro.
The first thing it does is to delete any of
these semaphore files that might exist
from before. It first tests for the exist-
ence of the file using the MATE com-

“mand @Ffilename$, which returns a
Boolean value of TRUE (-1) if the file
exists and FALSE (0) if not. If the test
is TRUE, then the file is deleted using
the macro XXfilename$.

The file ALEXSR1.MAT does not con-
tain all the information or commands
needed to perform the entire task, so it
proceeds to load additional files into other
editing buffers. The first three will only
be read; the last one will be edited.

Into buffer 7, the master macro loads the
file ALEXSR1.TPL, which contains a
template that indicates the desired cir-
cuit response. More about this later. A
subroutine macro, READNUM.MAT, is
read into buffer 8. This is a macro that
I us¢ in many other analyses, and so it
was convenient to store it in a separate
file rather than incorporate it into the

16

master macro directly. The next step is
to read the simulation results
(ALEXSR1.0UT) into buffer 1.

The last step is to open the file
ALEXSR1.RES, the cumulative results
files, for editing in buffer T. Since this
file grows larger and larger as time goes
on, it is read in last. That allows PMATE
to use it automatic disk buffering to scroll
through the file to the end with the UZ
macro without risking an out-of-memory
error condition. If it were loaded earlier,
PMATE might run out of memory when
trying to load the other files. That’s just
what happened when 1 was away in
Germany. My colleagues described the
screen displayed by the hung computer,
and I was able to diagnose the problem.
Thad them copy the large ALEXSR1.RES
to a floppy diskette and then delete it
from the hard disk, allowing a new one
to form. As I recall, they had to do this
one additional time before I returned.

Now the analysis can begin. To under-
stand what is happening, you need to
know what the output from PSPICE looks
like. Listing 3 shows a condensed ver-
sion, The beginning of the file has a
complete listing of the circuit definition.
Only after that come the results of the
computation.

The analysis begins in buffer 1, with the
cursor at the end of the file. We search
backwards for the string ‘0.000E+00"’.
From experience I know that this exact
value of zero occurs only as the value of
time in the initial time step. (If that
could not be relied on, I could have
searched back for the second occurrence
of “TIME"")) If the search fails, there is
something wrong with the data file. We
then go to buffer T and add an error
message to the result file. We then cre-
ate a one-line semaphore file,
ALEXSR1.UNK, to signal an unknown
result and exit from PMATE.

If the search succeeded, we loop through
the output data several times, each time
looking row-by-row at a particular col-
umn of data. The circuit is a digital shift
register, and the data table shows the
voltages at three stages of the shift reg-
ister after each clock cycle. We want to
determine for each voltage whether it

represents the high digital state, the low
digital state, or an intermediate, invalid
state. The circuit can fail either by hav-
ing a node that does not settle into a
valid digital state or by having a node
end up in the wrong digital state.

Variable 2 is used to store the column
number where the character ‘E’ appears
in the data for a particular node. The
loop is traversed for column values of
20, 32, and 44. If an ‘E’ is not found,
then we know we have reached the end
of the table, and we skip out of the loop
to pick up the next column value.

If the “E’ is present, we back up to the
beginning of the number and execute the
subroutine macro (READNUM MAT) in
buffer 8. It loads variable 0 with 1000
times the value of the number in the data
table. For my circuit, a value under 800
(0.8 V) constitutes the low state, and a
value over 1600 (1.6 V) constitutes the
high state. Depending on the outcome
of the comparisons, either an ‘L’, and
‘H’, or an ‘I’ is added to the line in the
result file in buffer T.

After each column has been scanned, a
carriage return is added to the result file
so that the results for the next column of
data (shift register node) appear on the
next line of the result file. A section of
the result file is shown in Listing 4.
When the three loops through the macro
have been finished, the result file will
end with lines like the following:

LHLLHHHHLLLL
LLHLLHHHHLLL
LLLHLLHHHHLL

The top line shows the sequence of out-
put states of the first stage of the shift
register. The second line does the same
for the second stage, and so on. You can
see that the data pattern propagates
through the shift register.

The next step is to see if this pattern
agrees with the intended pattern, which
we loaded into buffer 7 from the file
ALEXSRI1.TPL, which I had created
manually. The macro command
@h"A@7$ (where "A represents con-
trol-A) compares the text at the cursor
(in buffer T) to the text represented by

The Computer Journal / #64

the indirect string ““*A@7’’, i.c., the
contents of buffer 7. The result of the
comparison is stored in variable 0, which
is then tested to determine which mes-
sage line will be added at the end of the
result file and which semaphore file --
ALEXSR1.GD or ALEXSR1.BAD --
will be written out. The edit buffer is
- then closed (macro XE$), and the edit
session terminated (macro XH).

Having shown you last time the general
structure of the failsafe setup and this
time the innermost structure where the
evaluation of the results of a single simu-
lation is made, next time I will show you
how these two pieces are connected to
carry out the complete, complex compu-
tational task.

Listing 1. The dummy failsafe script for DESQview.
Q@echo off

REM This is the initial FAILSAFE program that will be run
REM when DESQview is first booted.

text

This is FAILSAFE for DesqView! Right now it is doing
nothing. Add code to CA\DVIFAILSAFE BTM if you want
something to be performed on a coldboot into DesqView.
endtext

Listing 2. The MATE macro contained in the file
ALEXSR1.MAT.

; ALEXSR1.MAT

: This macro analyzes the data in ALEXSR1.0UT and

. generates a table of the output states for each of the

: three latches. The results are compared to a template

; supplied by the file ALEXSR1.TPL. A flag file is written

; out to indicate the result of the analysis. These files are:

; ALEXSR1.GD resuits were good (matched template)
ALEXSR1.BAD results were bad (did not match

X template)

; ALEXSR1.UNK results unknown; analysis failed

; clear any exiting fiag files

@falexsr1.gd$boalexsr1.gd$}
@falexsri.bad${xalexsr1.bad$}
@falexsri.unk$ focalexsrt.unk$}

; IF alexsr1.gd exists,
; IF alexsr1.bad exists,
. IF alexsri.unk exists,
; if exists... erase it

; load support files into buffers

b7e ; goto buffer 7

xk , clear it

xi alexsr1.tpl § ; load template file
bBe ; goto buffer 8

xk ; clear it

xi readnum.mat $; load the macro for reading numbers

ble . work on data in buffer 1

xk , Clear it

xi alexsr1.out$; read in the data file

bte ; goto buffer T

xk s clear it

xf alexsri.res § ; edit the resutt file

uz ; make sure we start at the end
ble ; back to buffer 1 for analysis

e ; turn off errot trapping
-s0.000E+008 ; find starting time value

@ef ; IF error

The Computer Journal / #64

bte . goto buffer T
i *** bad data in ALEXSR1.0UT ** §

13i . write error message

1xo alexsri.unk $;. write flag file

xe$xh . Close the edit file and quit

% . end macro (not really needed)

} . ENDIF

t ; remember the location

20v2 ; process first column of data

L , mark entry point for looping

[. REPEAT

| , goto next line

Q@2qx . goto exponent of value to read

@="ey{} , if character is not “E"”, exit loop

-5m ; back up to beginning of number

8 ; read the value into variable 0

bte ; goto buffer T

@0<800{ i IF result is low state

L8 . write” L

X , ELSE

@0>1800{ IF result is high state

i HS ;o write H”

X . ELSE

il$; write " I

} ; ENDIF

} ; ENDIF

ble , return to buffer 1

] . END REPEAT

bte , goto buffer T

13i . add carriage return

ble ; come back to buffer 1

. return to starting point

@Q2+12v2 ; calculate column for next data

@2<45(} , if less than 45, loop back
,aboveis {j!}

bte ; goto buffer T

-3l ; go back to beginning of output table

@hrAQT7$V0 ; compare to template, put result in vO

z . back to bottom of file

13i ; insert blank line

i Results are $; insert header text

@0=0{ ; IF results matched template

iCORRECTS ; insert “CORRECT”

1xo alexsri.gd $, write out "good” flag file

H ; ELSE

IWRONG$; insert "WRONG”

1x0 aiexsr1.bad $, write out “bad” flag file

} , ENDIF

13 ; finish the line

xe$; close the edit file

xh ; end session

Listing 3. A condensed listing of the output file from the
PSPICE circuit simulation program.

** 07/22/92 13:22:68 ******** PSpice 4.05 ********
{ Listing of circuit definition deleted }
{ Listing of model parameters deleted }

TIME VOUT1) V(OUT2) V(OUT3)

0.000E+00 3.059E-01 3.059E-01 3.059E-01
2.000E-10 5.367E-01 5367E-01 5.367E-01
4.000E-10 5.367E-01 5.367E-01 5.367E-01
6.000E-10 5.367E-01 5367E-01 5.367E-01
B8.000E-10 5.367E-01 5.367E-01 5.367E-01
1.000E-09 5.367E-01 5.367E-01 5.367E-01
1.200E-09 5.367E-01 5.367E-01 5.367E-01
1.400E-09 5.367E-01 S5.367E-01 5.367E-01
1.600E-09 5.367E-01 5.367E-01 5.367E-01
1.800E-09 5.367E-01 §.367E-01 5.367E-01
2.000E-09 5367E-01 5.367E-01 5.367E-01
2.200E-09 5.367E-01 5.367&-01 5.367E-01
2.400E-09 5367E-01 5367E-01 5367E-01

JOB CONCLUDED

TOTAL JOB TIME 1874.95

Listing 4. A section of the result file ALEXSR1.RES.

07-09-92: Timer 1 on: 10:42.04

ftime = 50ps
ratio =0.90
couple =022
ShotArea = 4.00
Velk1 =245
Velk0 = 0.00
cross =1.00

LHLLH
LLHLL
LLLHL

rITrx

HHLLL
HHHLL
HHHHL

e

Results are CORRECT

Timer 1 off: 11:47:29 elapsed: 1:05:24.70

07-09-92: Timer 1 on: 11:47:36

ftime = 50ps

ratio =0.80

couple =0.22
ShotArea = 4.00

Velkt =250

Vclk0 =0.00

cross = 1.00
LHLLHHHHLLLL
LLHLLHHHHLLL
LLLHLLHHHHLL

Results are CORRECT

Timer 1 off. 12:52:04 elapsed: 1:04:27.91

SCSI BACK ISSUES

Here is a list of Back Issues that per-
tain to SCSI.

#22 - SCSI Introductory Column.
#23 - SCSI troduction to interface.
#24 - SCSI command Protocol.

#25 - Building a SCSI adapter.

#26 - Software for SCSI adapter.
#28 - SCSI for Real Time Control.
#31 - SCSI for General I/O.

#33 - SCSI for the S-100 Bus.

#48 - SCSI/Bernouli Drive for CP/M.

Issue 20 to 25 available in Volume 3,
Otherwise all issues available sepa-
rately. See pages 5245 Bfor list of back
issues and how to order them.

17

~ Regular Feature

. esue00 Suppor

Small System Support
By Ronald W. Anderson

History

This is going to be a nostalgia trip. We
are going to talk about SouthWest Tech-
nical Products Co. and GIMIX prima-
rily.

By way of introduction, I started work-
ing with microprocessors and their ap-
plications in 1977. I am an electrical
engineer by education, and I soon saw
the utility of computers in making my
jobeasier. (I mustadmit that when I saw
the first press release in a trade journal
describing a microprocessor, my reac-
tion was ‘“What would I do with some-
thing like that?’*). In December of 1976
I purchased my first computer, a single
board KIM-1 that used a 6502 proces-
sor. After learning a bit about instruc-
tion sets and real machine language pro-
gramming (i.e. calculate the binary or
hex instruction and enter it into the com-
puter memory that way), Idecided to go
a bit further into computers, so I ordered
a 6800 based computer from SouthWest
Technical Products Co. (I'll call them
SWTPc as nearly everyone did for quite
a few years). 1 bought the basic com-
puter kit with processor board and extra
memory so I could have 16K and could
run ‘8K BASIC’’ with some room to
spare for programs and data. My order
was placed in February 1977.

The order must have hit SWTPc about
the time a run started. An article had
just appeared in (I think) Popular Elec-
tronics about their machine, and they
must have been swamped with orders.
The first thing that arrived was a box
containing the BASIC and some other
software, and the manuals for those. It
was June when the final parts arrived. I
had ordered a cassette tape interface, a

18

printer, and a “‘TV Terminal’’ which
consisted of a keyboard and a board with
the serial terminal logic and a signal
converter so the terminal could use a
standard TV sct as a monitor (It had 40
character lines, since at standard TV
resolution 80 characters would not be
readable. All these were in kit form.

Before the computer kits arrived, I spent
many evenings studying the BASIC pro-
gramming manual. [had managed to
find a Tiny BASIC for the KIM-1, and
to expand it’s memory so I could begin
to play with BASIC programs so by the
time the SWTP¢ hardware arrived I could
at least write a simple BASIC program
and make it work.

I assembled the kits and had no problem
with the computer itself, but I managed
to put a solder bridge on the cassette
interface circuit board, which took sev-
eral hours to track down and repair.

At work, we had seen the potential of
microcomputers applied to our products
and had contacted Intel and Motorola.
The Intel folks told us that we would
have to spend a lot of money to get a
development system going. The
Motorola folks said ‘‘We’ll be right
over”’. Consequently we went with
Motorola processors, which pleased me
because I had a nearly compatible com-
puter at home. We bought the Motorola
‘“Exorciser’’ development system with
floppy disk drives and software includ-
ing a klutzy line editor and an assem-
bler.

As microcomputer technology grew, 1
eventually bought myself a pair of 5.25"
floppy disk drives and the SWTPc inter-
face board for my home system, plus

their simple operating system at the time.
I used it for such a short time that I had
forgotten what it was called. I just ran
across a reference to it. It was FDOS (I
assume for Floppy Disk Operating Sys-
tem). It assigned disk sectors sequen-
tially and space wasn’t recovered when
you deleted a file so you had to run a
utility called PACK to move all the valid
files to the beginning of the disk to make
room for further ones. (UCSD Pascal
adopted a similar disk operating system
that used a PACK utility).

The hardware disk interface didn’t work
right off, so I sent it back to SWTPc for
a fix. It was returned promptly and in
good working order. A few months later
the mailman nicely folded a 9 by 12
envelope in half and stuffed it in the
mailbox. It was a manual and floppy
disk containing Miniflex from SWTPc.
I managed to unfold the floppy enough
so I could read it, and I had Miniflex
installed in no time.

I remember the first assembler and my
fears about using it, which were quashed
in a day or so after I started to experi-
ment with it. The TSC editor was a
““line editor’’ in which you entered a
line number and that line was printed on
the terminal. By various commands you
could edit a line. C/this/that/ for ex-
ample changed the first occurrence in
the line of the word *‘this’’ to the word
*“‘that’’. C/about// would delete the first
occurrence of the word ‘‘about’” etc. The
slashes were string delimiters and others
would work as well. If you wanted to
edit a slash, for example, you could use
dashes for delimiters.

When the 6809 processor became avail-
able SWTPc¢ sold a new processor board

The Computer Journal / #64

with a 6809 on it. 1 bought one and
modified my motherboard to decode
addresses more tightly. Since I had so
much old 6800 software and so little for
the 6809 I installed a switch that would
allow me to use either processor board.
There were some differences in the ad-
dress decoding and the switch could

- accomodate either. With that upgrade

came FLEX9 for the 6809. Flex was a
product of a company called Technical
Systems Consultants, then in Lafayette
Indiana (Purdue country). They had sold
a number of computer games written in
asscmbler and distributed on cassette tape
for the 6800, and then branched into a
line editor, an assembler, and a number
of other products. Now as I think about
it, they sold some simple games for the
KIM-1 6502 board as well on cassette
tape or in source and object code listing
form. Of course computer games in
those days were things like ‘‘Hangman™.
The most complex game they sold was
“‘Battleship’’, just like the old board
game in which your opponent tries to
sink your ships secretly marked on a
grid, by bombing various points on the
grid.

TSC was the first major supplier of soft-
ware for the SWTPc systems, though
SWTPc dabbled in software on and off
as well. TSC released two versions of

"BASIC to replace the original SLO W

BASIC that used BCD arithmetic. The
first release had 6 digit arithmetic and
was FAST. The later one had 15 digit
arithmetic and was slower but still faster
than the old nine digit BCD version.
BCD means “‘Binary Coded Decimal’’.
Most of the 8 bit processors had some
facilities for decimal arithmetic in which
a byte was divided into two 4 bit
“nibbles’”, each one representing the
numbers 0 through 9. Since in binary
each 4 bits can represent numbers 0
through 15, BCD is a less efficient rep-
resentation of a number, but more im-
portantly, binary arithmetic is more natu-
ral on a system in which numbers are
represented in binary. More natural
means more efficient. Binary arithmetic
runs much faster than binary coded deci-
mal.

I began to write a column for ‘68’ Micro
Journal after dabbling in publishing a

The Computer Journal / #64

newsletter that I advertised by letters to
the editor of Kilobaud and a couple of
other computer publications of the time.
My first column appeared in the June
1979 issue. I seemed to have a knack for
finding bugs in new software. TSC’s
BASIC wouldn’t properly REWIND a
data file, for example, and their new
FLEX version of the assembler had a
bug that showed up when I typed in their
first 5 line example program.

Those first floppy drives were pretty
unspectacular. Each disk was single
sided and single density, and the Shugart
drives were capable of 35 tracks (40
tracks, 80 tracks, double sided, and
double density all came later). One track
was taken with boot information and
directory, so the disk had 34 user tracks
with 10 sectors of 256 bytes each, four
of which were used for sector linking.
Total bytes per disk were therefore 252
times 10 times 340 = 85,680. Since my
computer at the time had 32K of memory
(I had expanded it when 1 could buy a
16K board for around $190), I won-
dered how I could ever fill a disk that
held that much data(!) At the time I was
writing a few utilities in Assembler, and
most were no more than 1K bytes, four
sectors or less, so 85K plus sounded like
alot of room. Early SSSD (Single Sided,
Single Density) disks cost nearly $5 each
for this single sided single density
applicaton. (I now buy them by the
hundred in DSDD (Double Sided Double
Density) version for about 30 cents each).

Of course I soon wanted a third drive.
The best I could do at that time was
another 35 track drive for the bargain
price of $225. Then came double sided
40 track drives holding around 200K,
double density, giving 18 sectors per
track, allowing 360K, 80 track drives
at 720K. I was still back at the 85K
drives when I bought a pair of 8 inch
floppy drives that were double sided and
double density, and held just under 1
megabyte of data. Wow, 12 smaller
disks worth on one large disk. I would
surely never need more than my original
box of 10 disks (Ha). Incidentally those
drives cost $425 each and the controller
was around $225. One drive cost more
than the original computer kit! (Last
week I bought a 170 Megabyte hard drive

for $209. T had the IDE controller, but
could have bought one for $17)! I also
bought an Integral Data Systems printer,
a simple 9 pin dot matrix with one draft
mode and friction feed for roll paper. It
marked page ends (at least some of my
software did that) but pages were some-
where between 9.5 inches and 11 inches
long due to friction feed variations.

The new 6809 processor boards had what
was called a Dynamic Address Transla-
tor memory management scheme. The
DAT managed four extra address bits,
and so could address 1 Megabyte of
memory. FLEX couldn’t manage more
than 64K, however, so along came a
bigger version of FLEX called UNIFLEX
to handle that. I didn’t ever get into
Uniflex.

All along a company called GIMIX in
Chicago had been selling competitive
hardware, undoubtedly higher quality
better designed and better tested equip-
ment at substantially higher prices than
SWTPc, but unfortunately also incom-
patible with respect to disk formats. The
story was that SWTPc, in order to save
one IC package on their disk controller
board, had used the density byte to in-
dicate which side, and the side byte to
indicate single or double density. It all
worked fine if you had a SWTPc system,
but if you wanted to swap files with
someone with a GIMIX system you had
to use a single sided single density disk
only. GIMIX FLEX was different too,
since the GIMIX ROM monitor soft-
ware was different and the disk control-
ler hardware had to be different. Inall
fairness, GIMIX did it per the IBM
standards for floppy disks, correctly
using the density and side bytes on the
disk.

I received a letter from Terry Ritter, one
of the designers of the 6809. He was
very unhappy for two reasons. The first
was that the 6809 didn’t have extended
memory management built-in. Because
of that, each manufacturer handled the
extended memory management differ-
ently, so software written for one
wouldn’t work on the other. This frac-
tured the software market so that differ-
ent versions had to be written for each
kind of machine. A company called

19

Smoke Signal Broadcasting Co. was
also selling 6809 machines at the time,
and they required yet a different operat-
ing system. (I have to say that I never
saw one of their computers so I don’t
know much about them). Anyway, Terry
felt that the disparity of extended memory
management schemes spelled the death
.of the 6809. He didn’t say it, but I think
he felt that was why IBM chose the Intel
8086 with it’s built in memory manager.

Terry also felt that the software lagged
the introduction of the 6809 by much too
long. The combination of the fractured
market and the delays were what, in his
opinion killed the 6809. Actually there
was quite a bit of 6809 software devel-
oped for the SWTPc hardware. Looking
back, I think most of it was done by
individuals out of necessity because they
needed it, as a hobby, learning experi-
ence, or whatever, the making of money
being the lowest priority. The market
never really got big enough to be able to
support a company that supplied one or
two software products. The closest thing
to a commercial effort to supply software
was TSC with numerous products. At
one time or another they sold their stan-
dard Assembler, a relocatable macro
assembler, Pascal compiler, two BA-
SIC interpreters, a front end processor
for BASIC that let you write code that
didn’t look like BASIC, a line editor, a
word processor (reasonably powerful), a
super debugger in both 6800 and 6809
versions (for debugging assembler soft-
ware), a math package, a scientific func-
tion package, and undoubtedly a few that
have escaped my attention. Oh, yes,
eventually they released a version of
FLEX that would run on a Motorola
Exorciser system, their original *‘indus-
trial’’ development system for 6800 soft-
ware.

Many of the suppliers advertised their
products in ‘68’ Micro Journal which
became the hub of information on hard-
ware and software for FLEX and the
6809. I wrote my column in that publi-
cation for ten years plus, and never re-
ceived payments in the form of money,
but because I could write a review of a
software package at least somewhat ob-
jectively, I became the software reviewer
and applications ‘ ‘explainer’’. Ireceived

20

a copy of every software package that
was developed for those systems over an
extended period of time. Some of it was
downright junk and some was eminently
usable. I was always free to express an
opinion either way (or I wouldn’t have
continued writing columns). A few of
my reviews were not published, and the
package given to someone else with a
different outlook than I, and in some
cases received a better review. I can’t
complain about that because I looked at
tools from a perspective of whether they
would be useful to ME or not. I could
never becomeso detached and objective
that I could simply praise a software
package because it ran as advertised and
was relatively bug free. I do remember
one C compiler that tested a real number
for zero by adding up the bytes of the
mantissa and testing the sum for zero.
Carry was ignored, and so many combi-
nations tested zero when they really were
not. Of course the proper test would
have been to OR all the bytes together
and I made that suggestion.

A package came along called PIE
(Programma Interactive Editor) by a fel-
low named Tom Crosley at a company
called SoftWest. Tom had done a 6502
version for (of course) the Apple (known
as Apple PIE). He had done a 6800
version and a 6809 version. PIE was a
full screen editor and I liked it a lot. 1
managed to get the source code so I
could customize it for different termi-
nals. It was written in Assembler, not
very well modularized. 1 decided that I
would prove to myself that I could write
a similar one keeping the good features
and adding better ones, in a higher level
language. A company called Windrush
Microsystems in the UK had produced a
compiler called PL9, which was almost
Pascal, but allowed some things that
Pascal wouldn’t. I embarked on a year
or two spare time project to write a screen
editor called PAT. PAT stands for Pro-
gram And Text Editor. I thought PATE
sounded too much like liver, so I dropped
the E. I don’t know why I didn’t think
of calling it TAPE. I still use PAT on
my 6809 systems. 1 wrote a version in
C and then in Windrush’s PL9 version
for the 68000 called plus. The C version
ran under OS9 on a 68020 system that
used GIMIX hardware. The plus ver-

sion ran under SK*DOS on a 68000
system supplied by Peripheral Technol-
ogy. Later I did a C version for IBM,
which I am presently using to write this.
(Yes, I've switched at least part of the
time to IBM clones).

One evening I was busily using a
disassembler called DYNAMITE to look
at the code in PIE. When my son asked
me what I was doing, I said without
much thought “‘I’'m disassembling PIE
with DYNAMITE”’. Of course it sud-
denly occurred to me that such an opera-
tion would be pretty messy!

At work we had long ago bought a few
SWTPc systems to use for program de-
velopment, and then eventually built our
own. As soon as we started program-
ming our machines in Assembler I started
searching for something else. I figured
we couldn’t write programs fast enough
in assembler. I ran across a compiler
called STRUBAL+ (STRUctured BAsic
Language) by Jack Hemmenway. It
worked, but it was terribly inefficient.
A four page program would run me out
of operating memory on the 6800 sys-
tem. Lucidata in the UK advertised a
Pascal compiler and it worked just fine,
and was reasonably efficient though it
wasn’t very fast because it was a P code
compiler, That is, it generated a pseudo
code that had to be interpreted at runtime.
It was very easy to use, and was bug
free. 1 reviewed it and called it the first
non-toy compiler [had seen for the 68XX
processors. Windrush PL9 appeared soon
and I reviewed it saying that I would use
it if only it had floating point arithmetic.
A couple of months later I received an
update package with floating point arith-
metic, and we started using it (and are
in fact STILL using it since we still build
and ship computers with 6809 proces-
S0rS).

Assuming that some of you readers have
old 6809 systems of GIMIX or SWTPc,
and realizing that you might be looking
long and hard for software, let me list
the last known addresses of some of the
software suppliers. Perhaps if a few are
still in business and enough of you in-
quire about certain products, they will
run off a few copies and manuals and
sell them to you. If you write them and

The Computer Journal / #64

find out they are no longer interested in
selling copies, you might ask if it is OK
to get a copy from someone that has their
software. I understand that most of the
suppliers have been quite unreasonable,
not wanting to supply the software but
still maintaining full copyright protec-
tion, thus making it impossible to get a
copy. Maybe there are a few who now
are willing to allow vintage computer
users to share vintage software. My best
hunch would be that Windrush would
approve, and perhaps Lucidata. TSC
may not be in business, and some of my
last known addresses might be wrong,
or the companies out of business.

If you get approvals for public domain
release of some of the software the
chances are good that I have a copy
somewhere. I'll be glad to supply copies
to someone wanting to act as a librarian,
but manuals will be a big problem. Maybe
inthese days of quick copy places, some-
one will want to copy them and distrib-
ute software and manuals for cost plus a
small profit to cover wear and tear on
disk drives etc. I'll donate originals if I
can have a set of copies back. All this
contingent of course on a duly signed
authorization to allow vintage computer
users to swap copies.

Perhaps that is enough for a first col-
umn. If you care to write me, my full
address is:

Ronald W. Anderson
3540 Sturbridge Ct.
Ann Arbor, MI 48105

Please, if you want to communicate, write
and don’t call. I like to answer letters
and questions at my convenience, genet-
ally late at night when all is quict around
the house. I don’t promise to answer
every letter either in column form or
personally, but I have in the past gener-
ally managed to do so. It will depend a
bit on whether I get 5 letters or 100. I
type fast and enjoy corresponding with
someone as a change of pace from my
work use of computers. Please don’t ask
me to send you software. We must go
through the public domain release pro-
cess first. There is one exception. I'll
send source and object codeto PAT 6809
version (I'm sorry but there is no 6300

The Computer Journal / #64

version) along with a complete manual
on disk (that can be printed out on any
standard dot matrix printer) to anyone
who will send me a blank disk. Format
will be DSDD 40 track, FLEX (not
GIMIX) compatible. If you have a
GIMIX system I can send PAT on a
couple of SSSD disks and you can copy
them to a DSDD on your system. Please,
if you want PAT, send blank disks and
desired format instructions.

I should mention here that though FLEX
is no longer available and last I heard
TSC wasn’t willing to let it go Public
Domain, there is a totally compatible
operating system called SK*DOS avail-
able from Peter Stark (see below).
SK*DOS will run any software package
that would run under FLEX.

Addresses:

Windrush MicroSystems Ltd.
Worstead Laboratories

North Walsham, Norfolk NR28 9SA
United Kingdom

PLUS - Pascal like language for 68000 OS9
PL9 - Similar language for 6809 FLEX
MACE - 6809 macro assembler

McCosh “C" - a fairly complete C compiler
(pre-ANSI)

Star K Systems
P.O. Box

Mt. Kisco, NY
Peter Stark

SK*DOS operating system for 6809, FLEX
compatible
SK*DOS for PT-68K 68000 systems

Lucidata Ltd.

(last known address, 1986)
P.O. Box 128

Cambridge, CB2 SEZ
England

Nigel Bennee

P-6800 Pascal Compiler for 6809 FLEX

Certified Software Corp.
P.O. Box 70,

Randolph, VT 05060
Bob Reimiller

Pascal compiler for OS89 680XX
Pascal compiler for FLEX 6809 (long ago)

Palm Beach Software
12364 CR 223

Oxford, FL 34484-2709
Dan Farnsworth

SPELLB - 6809 spelling checker FLEX
SPELLB - 68000 spelling checker SK*DOS,
REXDOS

ASMK - 68000 Assembler SK*DOS,
REXDOS

REXDOS - operating system for 68000,
FLEX compatible

EDDY - screen editor for 6809, version

for 68000 _
68000 in this context is PT68K-2, -4, -5 from
Peripheral Technology, Marietta GA

Talbot Microsystems

1927 Curtis Ave.,

Redondo Beach, CA 90278 (1986 address)
Ray Talbot

Another address from a software package:

Talbot Microsystems
7209 Stella Link, Suite 112
Houston, TX 77025

tFORTH for 6809 FLEX version

Frank Hogg Laboratory (I don’t have a current
address)

Syracuse, NY

Frank Hogg

FORTH - for FLEX 6809 CoCo
Currently into 680XX hardware and software

Lioyd /0

19535 NE Glisan
Portland, OR 97230
Frank Hoffman

(may be out of business)

Line of cross assemblers to run under FLEX
6809
and OS/9 68000

Introl Corp.
647 W. Virginia St.
Milwaukee, WI 53204

C compilers for FLEX, OS9, and Uniflex

Mike Randall

32 Upland Road, Kelburn
WELLINGTON S

NEW ZEALAND

Modula 2 compiler for SK*DOS 68000
If anyone has additions to this list, please send
them to me. | had several other compilers and

related products from companies or individuais
that would now be very hard to locate.

21

Real Computing

By Rick Rodman

Linux

I installed Linux on CD-ROM (from
Walnut Creek CD-ROM for about $60).
The machine I installed it on was a 386
with 16MB of RAM, a SCSI hard drive
that I wanted left alone, a SCSI CD-
ROM, and an external SCSI 128MB
magneto-optical drive. What I hoped to
do was install it on the magneto-optical.

Let me say right away, this system is
amazing. The floppy boot which comes
with the CD , automatically detected the
Adaptec SCSI board and all of the SCSI
drives, and the Western Digital Ethernet
card, and configured itself for all of them,
without me telling it anything! Thisis a
first for the PC world.

Linux comes with TCP/IP, X Window,
Ghostscript, and everything else you
‘might need, including full source. It
also comes with an 85-page manual,
which is not a ‘“DOS for dummies’’ by
any means, but more a collection of pieces
of terse text files and E-mail messages.
You can install it in three ways: CD
dependent, which requires the CD to
run, but takes only 2MB of hard disk;
binary, which runs from the hard disk,
presumably faster, and takes 95MB; and
complete, copying everything to the hard
disk, which takes 245MB.

At first, I couldn’t get Linux to work
with the optical drive, either as a single
partition or split into four. After that]
tried an 80MB Seagate hard drive, and
that didn’t work either. As it turned out,
I got bit by the usual Fundamental Thing
They Forgot to Mention (FTTFM).

In this case, the FTTFM was the fact
that there are two different types of par-

22

titions - Minix and ‘‘Extended’’, which,
of course, has nothing to do with the
Extended DOS partitions you normally
see hanging around disk partition pro-
grams. Furthermore, there are also two
types of filesystems, Minix and Extended.
Minix filesystems only go in Minix par-
titions, and Extended filesystems only
go in Extended partions. Finally, and
the killer, although you can create either
kind of partition during installation, the
installation only lets you run ‘‘mkefs”’,
and it appears that this program only
works with an Extended partition. I
imagine the “‘e’” in the middle was sup-
posed to clue me in.

Once you get it installed, you have to
make a boot floppy. The instructions are
on page 2 of the manual, but like much
of the manual, they’re incomplete and
don’t match the actual version of the
software installed. On my system, /dev/
fdO almost works, but doesn’t. I have to
use /dev/fd0H1440 for the floppy.

1. Log in as root (no password required).

2. Format a blank floppy with: fdformat /dev/
fdOH 1440

3. Mount the system partion, which in my
case was the second SCSI drive, PUN 2:
mount -t ext /dev/sdbt /mnt

4. Copy the file vmlinux over the floppy: dd
if=/mnt/vmlinux of=/dev/fd0H1440

For those not familiar with Unix, dd is
a wonderful utility which can copy files,
truncate files, translate from EBCDIC to
ASCII, and a lot of other really neat
things. You can’t just copy, as in ‘‘cp /
mnt/vmlinux /dev/fd0H1440", because
the cp command will overwrite the *spe-
cial file” in the /dev directory which
represents the device. (Devices are not
actually files in the /dev directory, in-
stead, there are ‘‘special files” created
by mknod which represent them for com-

mon activities.) In the case of character-
mode devices (e.g. /dev/tty0), cp seems
to work properly, but it doesn’t handle
block-mode devices such as disks or tape.
Dd is more intelligent, but of course is a
more complicated program.

Now, once you’ve booted on the hard
drive, you may want to get back to the
CD-ROM. The mount command you
need (not listed in the manual) is:

mount -t is09660 /dev/scd0 /mnt

Once you're over those hurdles, you're
up and running, and you can edit with
Emacs, compile programs, and anything
you might do with Minix. But wait,
there’s more. Now, you can move on to
getting X Window (never ““X Win-
dows’’, remembert) to work. Nearly all
VGA and Super VGA boards work very
well. For higher resolutions, you might
check what ‘‘dot clocks’ your video
board has. Iused both ATI and Paradise
chip-set Super VGAs with no difficulty.
Diamond boards are not supported.
There is an experimental driver for the
8514, which I hope to try soon.

Side comment to anyone in the PC world
wondering what video board is the best:
There are three basic classes for sale
today. First, the VGA and Super VGA
boards. There are slight differences in
speed among these. Second, the 8514
and compatibles, such as the ATI Ultra.
These are tremendously faster than any
VGA or Super VGA, but cost more.
You're usually limited to a maximum
1024x768 resolution. Third, proprietary,
and very expensive, higher resolution
boards like Cornerstone, Artist Graph-
ics, Number Nine, Sigma, Matrox, etc.
These boards are useful when you want
to go 1600x1200 or higher. But remem-
ber, you have to get drivers from them.

The Computer Journal / #64

If the board only comes with a Windows
2.1 driver, you run Windows 2.1 or you
run DOS, buddy.

If you try a driver and the screen goes
haywire, remember that you can get out
“blind’’ by a Ctrl-Alt-Backspace

tridigitation.

The mouse drivers are more of a mess.
A Microsoft-compatible mouse con-
nected to a regular serial port works;
nothing else I've tried does, though, and
the manual’s comments on this topic
don’t match the installed software.

X Window is very nice, although it seems
a little sluggish. There is an MPEG
viewer which will give your video board
areal workout. Full source is on the CD,
too.

I haven’t yet tried the networking stuff.
Supposedly it’s TCP/IP. Also, you can
apparently mount DOS diskettes and
partitions, and run DOS programs from
within Linux, but I haven’t tried that
either.

The version number of the Linux pack-
age I got was 0.99.7a, which indicates
that the folks don’t view it as a finished
system yet. In my opinion, the main
area that work is needed in is the manual,
everything else is very good. If you're a
fairly competent Unix user, there’s no
need to pay big bucks for BSD-386,
UnixWare, or Solaris. This package is
more complete, lower in price, and in-
cludes source.

Some folks are working on porting Linux
to the PC-532. T've also heard that a
port is underway to the Amiga. I'm sure
you'd need an Amiga with an MMU,
like the A2000 or A3000. If you've got
an A1000 or an A500, you can still run
Minix. More interestingly, some Linux
folks are working on a package called
WINE, which will allegedly allow MS-
Windows programs to run under Linux
using X-Windows. This more or less
rescmbles the WABI stuff going on at
Sun, where they hope to run MS-Win-
dows programs under Motif.

If you're not fairly confident of your
Unix thinkology, Minix has a much bet-

The Computer Journal / #64

ter manual, and, from what I've heard,
Coherent is even smoother to get work-
ing. But if you want to jump in with
both feet, Linux is an immense package
with new things to see at every turn.
And you can’t really foul it up too bad,
because after all, it comes on CD-ROM.

Dynamic linking in Windows and
0S/2

Don’t turn the page! What I’m going to
describe here, and very briefly - I prom-
ise! - is the way the DLLs really work,
which is much simpler than the
ponderosities purveyed by PC
pontificators would presume to portray.

DLLs really are regular EXE files with
a list of function entry points at the be-
ginning. When you load a DLL, it’s
brought into memory. You can now call
the entry points by indexing into the list
of entry points. There are two ways to do
this; by indexing into the table by num-
ber (called an ‘‘ordinal’’) directly, or by
looking up the ordinal in a list of names
near the beginning of the file.

The SDK, and Windows and OS/2, let
you use DLLs sort of like regular code
libraries. What happens here is that you
actually link with a *‘stub library’’ cre-
ated by reading the name list out of the
DLL. LINK then marks your EXE file
with a list of DLLs that must be loaded
before the program can run. As you can
see, there are bad sides to this: not only
does your program take a long time to
start up, as all of the DLLs you ever use
are loaded, but also, if any DLL doesn’t
exist, your program can’t handle it.

It’s faster and more powerful to load
your DLLs yourself at run-time and call
the functions using the ordinals. A neat
capability you get this way is selecting
the filename of the DLL at run-time, for
example, to select different languages or
equipment configurations.

When you dynamic-link, nothing is
checked - it’s all up to you to get your
ordinals and parameters correct. If you
statically link and use prototypes, you

can be fairly safe, as long as the DLL
doesn’t change - more on this in a minute,

Dynamic linking in AmigaDOS

At the outset let me quickly say that the
“DOS’’” in AmigaDOS doesn’t stand for
“‘Dumb Old Stuff”’ like it does in the PC
world. AmigaDOS is a very clever and
well-designed multitasking operating
system once known as Tripos. It was
once portable, but with its destiny chained
to the Amiga star, hardware dependen-
cies have stowly crept in.

On the Amiga, there are ‘‘libraries”
which work very much like Windows
DLLs. They are executable files with
multiple entry points. Libraries are
loaded with a procedure called
OpenLibrary, which returns a pointer in
register A6. After that, you call the
library by offsetting from register A6,
like this; JSR _LVOxxx(A6). Rather
than using hard-coded constants, usu-
ally include files are used to define the
offsets. This gives you the convenience
of using mnemonic names rather than
numbers, but it’s still much like the
“‘ordinals’’ method under Windows.

Like Windows, parameters and offsets
are not checked. If you make a mistake,
or if the library changes, you’re lost in
space.

Unlike Windows, which itself consists
of three main DLLs (named EXE),
AmigaDOS itself consists of a large
number of libraries loaded at boot time.
It’s quite easy to add a new device driver,
or replace any of the standard device
drivers or libraries. It has its own idio-
syncrasies, of course, but is on the whole
averylikable OS. It’s multitasking, too,
and quite stable.

Dynamic linking in SunQS Unix

Under SunOS, the dynamic linking fea-
ture is considerably different from Win-
dows and the Amiga. All references are
done using names (symbols). When you
have linked with the “‘shared object’
library (a ““.so0”’ file), a reference is added
to your object that the file is needed. At

23

run-time, the “*.so”’ file is loaded before
your program begins execution, but the
addresses you reference are not resolved
until the time of first call. This means
that the first time you call a function, the
name is resolved in the library. Thus,
you can get an ‘‘undefined symbol’” er-
ror in the middle of running a program.

Remember the library-changing prob-
lem we discussed in the Amiga and
Windows environments? While some
programmers are writing programs that
call libraries, other programmers are busy
making improvements to the libraries.
With static linking, the program was
combined with a snapshot of the library
at the moment that they got along nicely.
With dynamic linking, neither the rock
nor the hard place are fixed in any rela-
tion to each other.

SunOS, though, has an interesting solu-
tion to this problem: version numbers,
with a major version and a minor ver-
sion, are stamped on the ““.s0’” file and
any executable it is linked with. Then,
at run time, the loader (ld.so) looks for
a ‘“.s0’’ file with the same major version
number and the maximum available
minor version number. Library writers
must remember to increment the major
version number any time changes in
functions or their parameters are made.
The version numbers are put on the file
name. For example, the Xt (X Window
Toolkit) library file on my system is
““libXt.s0.4.10"’, and the C runtime 1i-
brary is “‘libc.s0.1.6”".

Unix folks have the luxury of 31-or-
more-character filenames. Under DOS,
this same thing would be harder to ac-
complish. The main drawback of the
SunOS approach is the linking of entry
points by name at run-time, which is
slow; since the library name is deter-
mined at link time, again, you can’t
handle a missing library or specify the
library filename at run-time.

For operating system hobbyists, the best
scheme - where best means simplest and
fastest at runtime - appears to be a vari-
ant on the AmigaDOS system; but add-
ing the version number scheme used by

24

SunOS would be easy to do and well
worth the extra work.

TCP/IP for small computers

Moving along to another topic: What
we really need in our little-machine com-
munity is a consistent way to communi-
cate between the machines, share files,
and so on. In my Laboratory, I have an
Amiga, a DEC Rainbow, four PCs, three
S-100 machines, and a Sun, in alpha-
betic order. Many TCJ readers, includ-
ing our esteemed Editor, have similar
collections. Right now, to transfer files,
I have to plug and unplug cables and use
avariety of file-transfer programs: Kermit
here, Xmodem there, Zmodem there.
Wouldn’t it be great if we could con-
struct a little network using RS-232
cables, with very simple client software
and consistent commands?

Since TCP/IP appears to be the standard
and everyone’s favorite, we’re looking
at that first. There are two possibilities
for TCP/IP on small computers. Both
support use of SLIP (Serial Line IP),
which should allow computers with se-
rial ports to interact with other comput-
ers on an Ethernet network.

One is the KA9Q package by Phil Karn.
This package started out (relatively)
small and simple but soon became ex-
tremely large and complex. I have two
versions, one from 1987, the other from
1991. The 1987 version has 73 source
files adding up to 387 kbytes; the 1991
version has 246 source files adding up to
1.7 megabytes. This is not including the
drivers.

The second is TNET, an implementa-
tion of TCP/IP for Minix by Michael
Temari and Fred Van Kempen. This
one is not quite as large as the 1991
KA9Q, but still sizable.

Actually, I don’t think that these pack-
ages are suitable for our network of small
computers. They’re just too large and
complex. But that’s because TCP/IP
itself is too large and complex.

I am quite fond of fip’s ease of use. Ftp
is an application, however, not the pro-

tocol it rides on. As an APl I'm com-
fortable with Netbios, although it could
have been cleaner. But again, it actually
says nothing about the protocol under-
neath.

What we might do here is design a very
simple underlying protocol, perhaps
based on Xmodem or Zmodem, then
build an API atop that, and an ftp-like
program atop that. The protocol should
support forwarding of packets. The pro-
gram should be usable on single-tasking
machines with only a single serial port.

In the computer world a trend has devel-
oped toward simplicity, streamlining, low
overhead. An example is the low-over-
head Frame Relay protocol that is re-
placing the baroque X.25. And much of
the attractiveness of RISC machines
comes from this same trend.

Next time

I’ve also acquired an experimental oper-
ating system called ‘“Sprite’’. This sys-
tem was designed from the outset as a
distributed operating system. If time
and space permit, I'll have some impres-
sions of that package.

And from another time and space comes
a ‘‘fully operational battle station’,
Windows NT. Will all else go the way
of Alderaan? In the meantime, send in
your NT puns. (For example, “‘is the
glass half full or half NT””.)

Where to call or write
BBS or fax: +1 703 330 9049
(autoswitching)

E-mail: rickr@virtech.vti.com

Walnut Creek CD-ROM +1 800 786
9907 or +1 510 947 5996

1547 Palos Verdes Suite 260

Walnut Creek, CA 94596-2228

The Computer Journal / #64

CONNECTING IDE DRIVES

by Tilmann Reh

 Special Feature
 Intermediate Users

Part 3: IDE Commands

In Part II (printed in the previous issue of 7CJ) we covered the
basics of the IDE interface in terms of history, concept, hard-
ware, and register structure. This time we want to dig deeper
into the software side of those drives.

Terminology

Using common terminology, I often simply refer to the *‘drive’’
when, in fact, I am thinking of the integrated controller of an
IDE drive. However, when explicitly talking of an external
controller like the WD1010, I always refer to the *“controller’’.

Register Accessing

Let us first recall the Task File. It consists of the data register,
a set of six parameter registers, and the command/status reg-
ister. For those who don’t have Part II lying nearby, here is a
shortform:

Relative Address Register Abbr.

0 Data Register D

1 Error Reg. / Write Precomp. Reg, E/ WP
2 Sector Count SC

3 Sector Number SN

4 Cylinder Low C

5 Cylinder High C

6 SDH (Sector Size, Drive, Head) D,H

7 Status Reg. / Command Reg,

Also remember that the data register is the only 16-bit register!

Every parameter register of the task file is freely accessible as
long as there is no active command. Before loading the com-
mand register, all related parameter registers must contain the
appropriate values. They may be loaded in any order. After the
command register is loaded, the issued command is immedi-
ately started. The original WD1010 hard disk controller chip
had a flag (bit 1 of the status register) which was set during
execution. With IDE drives, the BUSY flag of the status reg-
ister is simply set until the command execution is completed.

The WD1010 controller chip knew only 6 commands. How-
ever, some of the commands have option flags within them. To
support additional features, today’s drives have many more
commands. The following is a list of common commands,

The Computer Journal / #64

options, and needed parameters, with the WD1010 commands
marked by an asterisk and the manufacturer-dependent expan-
sions marked with a plus sign:

Command Type 76543210 Hex Parameters

Recalibrate *0001 (Rate) 10-1F D

Read Sector * 00100ML T20-27 SCSN,CDH
Write Sector *00110MLT30-37 SCSN,CDH
ScanID/ Verify * 0100000T 40,41 D,(SC,SN,CH)
Write Format * 01010000 50 C.D.H,(SC,SN)
Seck * 0111 (Rate) 70-7F C,D,H)

Exec Diagnostics 10010000 90 D

Set Drive Parametersl 001000 1 91 SC,(C),D,H
Read Multiple + 11000100 C4 SC,SN,C,D.H
Write Multiple + 11000101 C5 SC,SN,C,D,H
Set Multiple + 11000110 Ceo SC,D

Power Commands+ 11100 xxx E0-E6 SCD
Read SectorBuffer 11100100 E4 D
Write Sector Buffer 11101000 ES8 D
Identify Drive 11101100 EC D
Cache On/Off + 11101111 EF D,WP
Power Save +11111xxx F8FD ?

Parameters in parentheses are needed with some drives and
ignored by others (depending on the manufacturer and age).
Any required parameters must be valid before a command is
started.

Although most of the commands are manufacturer-dependent,
this usually does not raise problems. For normal operation of
the drive, only the WD1010’s and few of the really common
commands are needed. Now let’s have a look at the options.

In the Restore and Seek commands, there is a four-bit rate field.
This was originally intended to specify the step rate for head
movements, with a zero value meaning 35 us per step and all
other values representing counts of 0.5 ms per step (so that the
range was from 0.5 to 7.5 ms). The hard disk controller had a
memory for each drive’s step rate, so the same value would be
used for implied seeks later. But very soon, even with later ST-
506 controller boards, this step-rate field became obsolete (due
to handshake mechanisms between controller and drive). With
today’s IDE drives, the four lower bits of those commands are
generally ignored.

25

The Read and Write commands originally had an option flag
(M) for multi-sector (m/s) transfers. Today this flag is nonex-
istent. For doing m/s transfers, the sector-count register is
simply set to the desired number of sectors to be processed.

But today’s drives have another flag which originally wasn’t
there: the ““Long”’ flag (L). When it is set, the ECC (error-
correction) data is transferred after the sector’s data field. I
assume this was meant for error correction when there are too
many errors for the drive to correct automatically. However,
there is a very odd characteristic: the ECC data is transferred
in bytes through the data register. This is the only case where
the data register doesn’t transfer word data! By the way, the
number of ECC bytes differs from drive to drive, but can be
read out using the Identify Drive command.

All generations of hard disk controllers and IDE drives support
the last option flag for Read/Write commands, the Retry Flag
(T). Normally, the drive retries to read/write a sector after non-
fatal errors. When this option flag is set, automatic retries are
disabled. The Scan ID command also supports this option.

The Commands

I will now explain the commands and their parameters in
detail. To do this, besides drawing on my own experience in
IDE interfacing, I collected detailed information and specifica-
tions from three different, independent sources. However, there
still might be some slightly different drives or controllers out
there. Please inform me if you encounter problems or differ-
ences with your disk.

One general feature of both the WD 1010 controller and mod-
ern IDE drives is implied seeks. That means you don’t have to
explicitly move the read/write (r/w) heads to the desired cylin-
der before starting to read from or write to the disk. When the
command is issued and the actual cylinder number doesn’t
match that of the cylinder registers, an implied seek is per-
formed, transparent to the user. This applies to every command
where it may be needed (Read, Write, Verify, Format).

Recalibrate (1xh):

This command moves the r/w heads of the selected drive from
anywhere to cylinder 0. The controller waits for the drive to
complete the seek before the task file is updated and the busy
flag is reset. Upon successful completion of the command, the
error register and the cylinder registers are set to zero, while
SC, SN, and SDH remain unchanged.

Read Sectors (2xh):

This is probably the mostly used command. It will read from
1 to 256 sectors of disk data as specified in the SC register (with
an SC value of 0 meaning 256 sectors to be read). The starting
sector is defined by SN, C, and H in the task file.

When the task file contains invalid parameters, an error occurs.

26

Otherwise, the r/w heads are moved to the requested cylinder
if they are not already there (implied seek). Then the data of
the starting sector is read into the sector buffer, and the DRQ
(data request) bit in the status register is then set. This informs
the host that the sector data can be read from the sector buffer.
When this is completed, DRQ is reset and the drive is ready
again,

For reading multiple sectors (SC>1), when the sector buffer is
completely read and DRQ is reset, the busy flag is set again
immediately, and the next sector’s data is read into the sector
buffer. When DRQ is set again, the next sector’s data can be
read from the buffer. This is repeated until the SC register
value reaches zero (this register is decremented with every
successfully read sector).

In any case, after successful completion of this command, the
SC register contains a zero value, and the other registers in the
task file are updated to contain the cylinder, head, and sector
number of the last-read sector. If an error occurs, the task file
will contain the parameters of the sector at which the error was
detected.

For the Read Sectors command, two options are possible. The
“*M” option is valid only with the original WD1010 controller
(thus with old AT’s). When M was not set (0), the SC content
was ignored, and exactly one sector was read. When M was set
(1), the SC value was taken as the count of sectors to read.
Today things are different. With modern IDE drives, if the M
bit is set, an error occurs. So this bit must always be cleared!

The other option (“°L’*) is valid only with modern IDE drives.
L’ stands for long and means that the additional ECC data,
which the drive automatically puts after each sector, is trans-
ferred after the net data of each sector. When this option is set,
the drive also does not check these ECC bytes, so it won’t detect
or correct errors. This provides a way to read a sector’s (re-
maining) data even if it is nonrecoverably damaged. When
using this option, remember that the ECC data is transferred
as bytes through the word-wide data register!

Write Sectors (3xh):

The Write Sectors command is very similar to the Read Sectors
command. Of course the data flow direction is different... This
command will write up to 256 sectors of data to the disk. All
parameters and options are similar to those of the Read Sectors
command. After writing the command to the command regis-
ter, the drive sets the DRQ flag, informing the host that the data
can be written into the sector buffer. When all data has been
transferred, DRQ is reset, and the drive starts writing the data
buffer contents to the disk. The busy flag is set as long as the
drive is physically writing to disk. The SC register is
decremented, and, if not zero thereafter, DRQ is set again for
the next sector. When using this command with the “‘L”’
option, the drive will use the ECC bytes delivered by the host

Continued after Centerfold, page 33.

The Computer Journal / #64

TCJ Center Fold

e

(4> @R wormar oseraTION SuuNTS G BE

UNLESS OTIER,WSE SPECIFIED: WSTALLED IN THE FOLLOWING POSITICNS
RESISTANCE VALUES ARE IN QrdS, REF OENG . DETWECN ANS
25m,.257
£ "2
CAPACITANCE VALUES ARE N a2 . w2
MICROELRLDS, »80 -2 Yo, SOV -
.4 T98,/1/2 1518
PONER D:ETRIBUTICN TI8.E P20 23724
AEF DESIGNATIONS [GNO| 48 |vr2 |-12 | -5 728,332
T 35/%
Ur-817.30. 37-44 w|r 18 [
54-6! J©o 374,2/8
U9-2.1:,6,25,2628 .
29-34,2¢,45 49,51, 52 S LAST INTERCONMECT LETTER USED CD*
83,7471 8203}, |
89,941,953, 94,100,102
23, /08./08,100.1:2, 116 .
HE-1™ ' € SAARE GATES: @7]

fre |~

v 3E L1 NN _,_D'L ! 2 A] AP,
| Q
w5,27,48.50 62, - MLS0e MNLSO¢ 4L 504 .’ <L

€5-73,757.8088% | 8 | /6

J

%, 93,206,107
uas 48 o (20

/
vee iy ;—TW,>J f] 4 s 6
U63,64,92 2§24] 74,308
vae- 87 ’ | ¥
uss i 2
—1 S e Bt P
e s |2¢ T MLs0e L50¢ MLs04
Ui, R5 " |26
) 20|21 {40 Y]
wwtny 7 |1/

J ACEERENCE DESIGNATIONS

LAST USED NOT USED ! z' 3 4 1] 2
cns cr Mes04 Wesos (X
£2
n

" fawe e x
$L30
wn ved MLSOY _{ 7 U}
]
"
Bre, 2 2
L30¢ 0 MCMES

vaz

/i

The Computer Journal / #64 Center Fold Section : 27

1

5.068

sn2,zna-« [Z 224008

+5v T [
RS3 10 o 9
—0
10K l -
! 13 - F
parl? 3 cioo \M__PA 4 .50 -
. P,
2 2o pac 4 [0 PAL_y 1518 .
Dér oo pasp ‘ 2 P25 5 u8-16° aavon
b 2Blos paall LRI 8 PAS 5 g1 sz, zna-s (W -2AUP8 2
L2 19 1415243
104 4L
sw2.286-5 0K s a0, S
] S ———— a3
o 2015 PR3 |y 0602
_DL___-..—'-,-op PA? -.—.—P‘-z—-),/g.lo
S YY) I —1 9 PAl Y 58
. ' P PAOy Jg-o .
: 25
swz, ZInm10 [T ——24%
17
mz.zua-r[[-ﬁﬂ——%c/u °—]_~
Al ' X
w2, Ine- 1T AL ———L2ipia
. gl XQE EIA Py vy HPARDY \ 10 g
SHL, N8 AN T Z0RQ 455 :
S"«'.zua-!.}?.'.%‘_‘_%——i% RO PARDY}— - : sw2,7n3-5 ([
sH2, 8) AP —20171 pasta
) 3 48-¢
— RSS #SY
— PasTe TR
B 4f=
snz, zn-¢ OEE220 & : wvv—j
14 13 H
+5Y]
uiot 5V as 2 © ;
e | o Lt L T o S
{(6PP10) ws 1, = ' 5
+85v a7 ;; : 102 _Z' ﬂfz JB- 40
GP | 26y, PBb ” p '—"—L’ €y 8-38
FE5 = < Q{—)JB-J&
PIO Faat J s Puy jg- 34
141524
SIo r 71 P
= 7i5
pe3l2 3 uni \y _pg3 , 4.3
pozt22 4 20__£62 4 ,8-30
a1 |28 3 9 %9/, yg-28
g & 280y ,8-20
741 5243
Lz 1 [} 13
RS
10K o 5
— 71 3
#5350 0 =
ox)@B___&m, se-22 ‘
rarprid!) 7408846 !
J8-24
——Ip
PesTB
In1_JEO)
2¢] 3] 22
sws,zus-« [EEL2

= iNT
svs, INF-1 (Bl

LIAT3 o) sus, 2w m-1

Center Fold Section The Computer Journal / #64

]
(31}
c125
L0l ! M GNO Fres
= N
2|l » '-]-' 2 3 ’ ”D;a - . Ja-7
O 1Y N
—0 o= 3 Ja-17
RZ Hxrat ueues Sow L o ST
5.06800HZ () I v %
3 ! T o ° ot
’ XTAL2® ciel
. L0
L £ 4 , o 35, .06 30PF T Joor
-‘i}—-——t STT =
7 38 T CX
o= Ja-15
941904 13 |7y 5l m,.% . ‘0)
. . RRCA TxCA e o
L3 PP E Tess,
i Txoa {3 13 ¥
! 15 * 1 n $ 6 X/0%
i {78 12 o T - o = ey
— M58
, LA 3;59f/d cmz L 210% TaDA; y-2
y (s10) ”opr_‘[100V ?
P‘ 8 8 | 12 = 0
: . STR Ry DA MEAES
’ !
Hsos ko 1 7 sywe a1 [tho Ra02 s 143
£ LR TyCB .
o RC T P B 8 0 I’I&ﬁv = E o—-——
8 15
SEE=3 P P i 9) ot L3 TN
- A il ci3o 1 ,
i 1907F
75,18 =, o5 20
A »J4-§
U9 Y] 2 -
. Bitte — . "":2 L., l——o [
~ 0TR,) ol £ $0% 24 oTRA >J4-20
D7 1P Ty cnsal’t""’f 23 oﬁij
De U 70, H2 23 peoa
0§ 3 hhts j o > Jé-8
» Je
o ~Bloa wror, 12 oot T
084 o i * el
' 03 s -
02 39| 100
0; Hor 4 MCIESS
0 a0 i
\ £ T,DB 2 B VB,C
Ci97
by
3 20 |28 So0d =
2,20 1-10 (EF & A0, !aﬁﬂ—ﬁ"m X0y | 43z
I 9
SYNC y 29 C,l:’!n :zr
! »
SH2, ZNE-1 :“ -—34ga ! I-
P R R id e — - ’e oD £, u3-5
SH2.2N8-2 ARFE L — FIYY; RTse [#Ciiss craq ..l. :g?
su2,2n8-2 B 4o ssom T
SN2 INB- 2@-————:M £7s, 122 TP ogfurl-o £
! 8 Dy HCre8t DA g3-4
I 166 = 2.8
5 \‘;3”'!_‘-[p.,?
— |28 Pl "'/" & - 08 3J3-8
ST02E BTR ?
SHZ, zna-s[:{_]—l—-\—c (43 8 Mciebg ;%3; T 1007
AST. -
Sna,zn8-2 OB 2drsr B5CDa2A A DIRS) 5-20
MC1489 4
- CiH4
w/RDY 5132 Y
- o il e
4 . 100Y J3-27
™ Yee 3
e '
4.]
sy 1€ W1_160
t hI 5 7|
s FA SHS,INF-4
s, aner- [N N
C v CTL 1 3 m
RIS g
g4 C TR FICH] e
NOES 8 0 tyrg vt Aptarpmpuriraioptegurmiere et
= ‘-—-—-*.—-—mn«--—nm—nﬂ
b aa— 4‘4—=- at uSPUYl SRSFUEIVER G0 Tut Gua
[ded _ﬁ_"ﬂ_ Walhan O AS%Ug) FUR 000U GEUURETER Gap-¢0 QMR M GNP
- 1] . - Er;.
= @e B, -—-‘Iﬂm SCHEMATIC -QTWS, CPV
— sy,
] \/ ———#——-LaE—_l‘q '] uu
E i ack SOERIE sum |* wlvet ¢ & Ga—
The Computer Journal / #64 Center Fold Section

POWER

DISTRIBUTION w5y
+5V
58 ¢
+
45-9 & - Cig4 X C4I,45,62,66 C1THAY 8,17 THR'Y 22,24, 35,37, 39, 40,43,46 THAU €3, 58 THQU 6/, 84
. 22 [X) . €8 TWRU 10,66, 868,69, 103 THRY 113,11y THRY 122 ,125,136,/23,132
: Loy 1% T 133,136 THRU 144,153,182 THR I, 193,194,133
ND J5v 35y I .
J5-4 e-- _G = 1. l
#s (—_ &3 =
s € " €23.25 ,
' Tt T ehE X CI0.12,4.08,28 THARY IS
+i4 +| se 30 THRU 37,73 THRU 84,95 THRY 102
=% 10% o1
+75% 3sv - H2V
12V 28v
sz —22
L a + C42,45,85,87
1.0 6.8
0% $10%
Y add
P il
Js5-1 € L4
' -2y
|
i R3I3 +]
“ 180 T-%’;”.L".'S, 158 TRy 181
” 1
*INSUIO 14
‘ " I
: +12V
w3 e 5 s e
+22rC
7 2RI s
| _L——) Sa=1
S
l
+5Y !
-
H-" '_;
]
J-20 PIRUIT (_1 |
b
= :
i
oy
J2-13 Q_J
J2-M THRUES (-—1 :

30

s 8 3 ——— =

Center Fold Section

The Computer Journal / #64

Continued from page 26.

and not generate any by itself. For the ‘"M’ option, the details
described above apply.

Scan ID / Verify Sectors (4xh):

This is a very strange command. As far as I know, it is the only

one that is totally incompatible between the old AT’s hard disk
“controller and today’s IDE drives. It would appear that this

command was never used by common system implementation
* or application software...

For the WD1010 controller, this is the Scan ID command. It
takes no parameters at all (except for the drive and head which
‘originally had to be contained in a register external to the
WD1010). When the command is started, the controller searches
for the next ID field and reads the contents into the task file.
This way the actual drive, head, cylinder, and sector size could
be examined. The sector number was also transferred into the
task file, so the sector numbering order could be figured out by
repeating this command fast enough.

For the IDE drives, this is a completely different command:
Verify Sectors. It is similar to the Read Sectors command
except that no data is transferred to the host, and the “L”
option is not supported. Thus, it needs all parameters in the
task file. Up to 256 sectors of data will be read into the sector
buffer, and their ECC bytes will be verified. The DRQ flag will
never be set. The completion status of the command can be read
from the status register.

It is interesting that both types of controller/drive support the
retry option - so this is the only compatibility of this command.

‘Format Track (5xh):

Originally, this command was used to physically format an
entire track of the hard disk, exactly as it’s done when format-
ting floppy disks. The Format Track command is started simi-
larly to the Write Sectors command: first the task file must be
set up, then the command written to the command register.
After that, the drive responds by setting the DRQ flag. The host
must then write data into the sector buffer until the DRQ flag
is reset. After that, the command is executed.

For the format command, the sector buffer must contain special
data. As with the index field array when formatting a floppy
disk, it must contain valid sector ID’s for every physical sector
of the track that will be formatted, beginning at the start of the
buffer. Each sector ID in the buffer consists of two bytes, The
unused remainder of the buffer is ignored by the format com-
mand, but must also be written for the DRQ signal to disap-

pear.

The first byte of each sector ID is a flag byte. The WD1010
knew only two different values for this descriptor:
00h = good sector,

The Computer Journal / #64

80h = bad sector.

Today’s IDE drives offer two more descriptor values:

40h = assign sector to alternate location,

20h = unassign alternate location for this sector.

We'll look further at these values below.

The second byte of each ID is the sector-number byte. It
contains the number by which the related sector is referenced
later during normal r/w operation. The ID fields in the sector
buffer are assigned to the physical sectors (created through
formatting) in the order they are stored in the buffer, So it is
possible to define an interleave factor by appropriate physwal
sector numbering. Here is an example:

Addr. 00 = 0001 0011 0002 00 12
08 = 0003 0013 0004 00 14
10 = 8005 0015 0006 00 16
etc.

Here we see the first 12 (of 32) ID words. The starting sector
has number 1 (as usual). The interleave factor is two, since
each sector appears two sectors after its logical predecessor.
You can also see that sector number 5 (the 9th sector physi-
cally) is marked bad.

Due to surface errors on the hard disk, there are some positions
where the media won’t store magnetic information reliably
enough (if at all). The defect list for a particular drive then
shows the cylinder, head, and “‘BFI’’ (byte from index) value
of the defect. People then had to calculate the bad-sector
position and number from each of those BFI values. However,
it is not commonly known that the relationship between the
BFI value and the sector number depends not only on the sector
size but also on the interleave factor and the starting sector
number...

Again, things changed as the years went by... I already men-
tioned when introducing the features of modern IDE hard
disks, that those drives don’t have defect lists any more, due to
the usage of internal spare sectors. For compatibility reasons,
these drives still accept the Format Track command. However,
most drives only simulate its execution — internally they don’t
really format any track. Modern drives are *‘hard-sectored’’ by
the manufacturer, with the sector size unchangeable by the
user. But by virtually formatting a track, one can assign new
sector numbers (for example, starting with O instead of 1).
However, the sector numbering order is often ignored. Because
IDE drives commonly have built-in cache memories, the defi-
nition of an interleave factor would make no sense. So, the
drive always uses the fixed sector ordering which gives maxi-
mum performance in combination with the cache.

To make things still more complicated, the Format Track
command of IDE drives allows for the assignment of data
sectors to the spare sectors and for the release of those assign-
ments (look at the descriptor bytes above). All IDE drives have
some spare sectors to which the data of defective sectors is
automatically mapped. Normally, there is one spare sector per
track, resulting in about 2-3% spare capacity. This is more than

31

enough. When a sector appears too unreliable during normal
operation, the drive simply marks that sector as bad internally
and moves the data to the nearest free spare sector. As long as
not all spare sectors are assigned, the user won’t notice any-
thing. However, these assignments can also be done explicitly
by use of the Format Track command. But it is strongly recom-
mended not to do that! First, one will normally get no defect
list for an individual IDE drive containing the BFI positions.
Second, even if a sector which was assigned to one of the spares
" is marked good again, the related spare sector can not be used
again! So with every unassignment of a spare sector, you loose
that irretrievably.

So we come to this result: with standard (i.e., ST-506) drives
and external controller (i.e., WD1010) it makes sense to format
the drive in order to freshen the surface magnetism, to get a
defined state (sector numbering and order), and to mark defect
sectors as bad (so that the operating system can behave accord-
ingly). With IDE drives, it’s best to leave them just as they are
coming from the factory!

Seek (7xh):

This command is used to move the r/w heads to a particular
cylinder explicitly. For normal operation of the drive, it is
usually not necessary, since all r/w commands perform implied
seeks. However, this command can easily be used for bench-
marks to determine the drive’s seek times. With the WD1010
controller, the four lower bits of the command byte contain the
step rate (described above). IDE drives simply ignore these four
bits.

Execute Diagnostics (90h):

. This command is common to all IDE drives but not available
with the WD1010 controller. When issued, the drive performs
an internal self-test. If the drive is a master drive, and a slave
drive is connected to it, the master also waits a limited time for
the slave to complete its self-test. During all this time, it is busy
(the according flag in the status register is set). After finishing
the test procedure, its results are placed in the error register. In
this special case, the content of the error register has to be
considered as a single byte value, not as several bit flags. There
are the following error codes:

O0lh no error detected,

03h sector buffer error.

(These codes are supported by Conner drives. Maybe other
manufacturers use more or different codes.)

If the slave drive diagnostics failed, the MSB of the error
register is set, leading to values of 8xh. However, even with
single drive configurations this bit sometimes is accidently set.
It may be ignored then.

Set Drive Parameters (91h):

An IDE-only command again. After power-up or reset, the
drive can immediately be used in its default mode. However,

32

the drive’s logical parameters can be changed by setting them
with this command. This way, the drive can be set up to
different modes in order to emulate the parameters of another
common drive. The task file registers which are used with this
command, and the way in which they are used, may differ.
Some drives are really flexible and allow any parameters that
result in no more than the drive’s real capacity. Other drives
(for example, my Conner CP-3044) support only two or three
modes with fixed parameters. So for their selection, only part
of the task file’s registers are needed. Most, if not all, drives
will accept this command with valid parameters in the SC, C,
and H registers (even if not all the parameters are required),
defining the number of sectors per track, cylinders, and heads.

Because of the differences, it is advisable to first collect de-
tailed information about the supported emulation modes of a
particular drive, before defining its operating parameters.
Normally, it’s best to operate a drive in its native mode (so the
logical parameters equal the physical ones). However, there’s
another strange detail: there are drives which don’t support the
native mode! My Conner drive again serves as example: the
drive has 1053x2x40 sectors (cylinders by heads by sectors)
physically, but supports only a pseudo-native mode with
526x4x40 sectors, and an emulation mode with 981x5x17
sectors (which is for compatibility with older 40 MB drives).
Additionally, depending on the internal software version, the
drive defaults to the emulation mode or to the pseudo-native
mode.

As a result, it is recommended that the operating parameters
always be defined after power-up or reset. And to define them,
you must have detailed information about the drive you want
to use. There is a “‘Product Manual™ for every drive type,
describing all those details. Unfortunately, these manuals are
hard to get. Most dealers are not willing to give them to their
customers (and some even don’t have them in stock). The other
way is to try out some parameters, starting with the information
delivered by the Identify Drive command.

The break - a sample program

I realize that I"ve already filled quite a few pages again. So I'll
make a break here and continue the command descriptions in
Part IV of the “*Connecting IDE Drives’’ article series. Instead
of continuing now, I'll show you a short program which reads
the ID information of an IDE drive within a PC/AT. This
sample program was written with Turbo Pascal 5.5 but may
easily be used with any version above 4.0.

You can try out this program on your AT (if you have one with
an IDE drive) and play with it until receiving the next issue of
TCJ with Part IV of the article. That part will finish the
command descriptions and will also contain some more pro-
gramming examples and shortform tables as a programmer’s
overview of the IDE interface definition.

The Computer Journal / #64

Abbreviation list:
BFI Byte From Index (position of surface defect)

DRQ commonly used for Data Request (bit flag or signal line)
IDE Integrated Drive Electronics (hard disk interface type)

Vo Input/Output

PC/AT . Personal Computer/Advanced Technology (a
class of computers)

r/w read/write

-ST-506 older hard disk interface standard, used between

separate controllers and MFM/RLL drives

program Get_IDE_ID;

(* Q&D 930903 Tilmann Reh *)

(* 930905 MSDOS *)

{* Reads the ID information of IDE drives and displays it.)

(* Should run with every IDE/AT harddisk drive. ")

uses ct;

corist SignOn = *m*jRead IDE ID Info V0.1 TR 930905"m*);
(* /O addresses and IDE commands: *)

IDE_Data = $1F0;
IDE_Error = $1F1;
IDE_SecCnt = $1F2,
IDE_SecNum =$1F3;
IDE_CylLow = $1F4;
IDE_CylHigh = $1F5,
IDE_SDH = $1F86;

IDE_CmdStat = $1F7;
CMD_Identify =$EC;
(* Data types and variables: *)

type WorkStr = string[80];
BufType = array[0..255] of word,;
IDRecord = record
Config tinteger,
NumCyls s integer;
NumCyls?2 s integer;
NumHeads s integer;
BytesPerTrk . integer,
BytesPerSec s integer,;
SecsPerTrack :integer;
d1,d2,d3 s integer;
SerNo - array {0..19] of char,
CtriType :integer,;
BfrSize ; integer;
ECCBytes : integer,
CtriRev ; array [0..7] of char,;
CtriMod! ; array [0..39] of char;
SecsPerint " integer,;
DbiWordFlag “integer;
WrProtect s integer;
end;

var SecBuf : BufType;
IDR : IDRecord absolute SecBuf,
Secs sreal;
ij . integer;

(* Convert byte/word values to hexadecimal strings: *)
function HexByte(x:byte):WorkStr,
const Nib : array[0..15] of char = ‘0123456789ABCDEF’,
begin

HexByte:=Nib[x shr 4]+Nib[x and 15};

end,
function HexWord(x:word):WorksStr,
begin

HexWord:=HexByte(hi(x))+HexByte(lo(x));

end;
(* Swaps the bytes of each “word” in string for correct reading. *)
function SwapStr(s:WorkStr):WorkStr,
var s1 : WorkStr;

i : byte;

begin

s1[0]:=s[0};

The Computer Journal / #64

for i:=0 to pred(length(s)) do st[i+1]:=s[(i xor 1)+1}];

SwapStri='>'+s1+'<’,

end,
(* Show error codes: status register and error register. *)
procedure Error(s:WorkStr);
begin

writeln(* ‘,s,"; Status: ‘,HexByte(port[IDE_CmdStat)),

' ! HexByte(port[IDE _Error]));

halt: end;
(* Wait until drive is ready. *)
procedure WaitReady;
const TimeOut = 5000;
var i : word;
begin
i=0;
while (port[IDE_CmdStat]>128) and (i<TimeOut) do begin
delay(1);
inc(i);
end;

if i=TimeOut then Error(‘'WaitReady TimeOut’),
end;
(* Wait for data request (DRQ). *)

procedure WaitDRQ;
const TimeOut = 5000,
var i :word;
begin
i:=0,
while (port[iDE_CmdStat] and 8=0) and (i<TimeOut) do begin
delay(1);
inc(i);
end,
if i=TimeOut then Error('WaitDRQ TimeOut');

end;
(* Send command to drive.)
procedure IDEcommand(Cmd:byte);
begin
WaitReady,
port{IDE_CmdStat):=Cmd,
WaitReady;
end;
(* Read sector buffer of drive, *)
function ReadSecBuf(var Buf:BufType):boolean;
var i : word;
begin
WaitDRQ,
for i:=0 to 255 do Bufli):=portw[IDE_Data];
ReadSecBuf:=port{|DE_CmdStat] and $89=0;
end;

(* MAIN: read drive's ID information.)
begin
writeln(SignOn),
IDEcommand(CMD_ldentify);
if not ReadSecBuf(SecBuf) then Error(‘Read Identify’);
with IDR do begin
writeln('1D constant
writeln('fixed cylinders ., NumCyls);
writein(‘removable cylinders : ', NumCyls2);
writein(‘number of heads : ',NumHeads),
writeln(‘phys. bytes per track : ‘ BytesPerTrk);
writeln('phys. bytes per sector : ‘,BytesPerSec),
writeIn('sectors per track : ‘,SecsPerTrack),
writeln(‘serial number - " SwapStr(SerNo));
writeln{‘controller revision : ‘,SwapStr(CtriRev)),
writeln('buffer size (sectors) : ‘,BfrSize);
writeln(‘'number of ECC bytes . ECCBytes);
writeln(‘controlier model ., SwapStr(CtriModl));
Secs := int{NumCyls+NumCyls2) * NumHeads *
SecsPerTrack;
writeln(‘total sectors ., Secs:1:0);
writein(‘capacity (MBytes) : ‘,Secs/2048:1:1),
end;
end.

. *,Config,' (',HexWord(Config),"));

33

Dr. S-100

By Herb R. Johnson

Copyright Herbert R. Johnson, Oct 1993.

This month, I'll cover the process of
adding a new BIOS and a new disk
controller to a S-100 system. But first:

Mail and Messages

Before I answer the mail, I have a re-
quest to my readers. I neced Internet
access! There is just too much CP/M
activity going on in the Internet that I
have no access to. Can anyone offer me
legitimate access within the Trenton/
Princeton NJ area?

Several people have written to me in the
hopes of finding a ‘‘good home’ for
their S-100 systems. Understandably
reluctant to discard them, and unable to
sell them in the “‘IBM’’ computer world,
they believe there is still good life, or at
least good tinkering opportunities, with
their systems; and they hope I can give
them a few bucks too. My general re-
sponse is to request a list of boards,
documentation and software in the hopes
I can match up one person’s needs with
another’s. Occasionally I'll buy a few
systems that strike me as interesting, or
in response to a buyer’s requests. Gener-
ally I sell replacement cards to people
who need a specific board, or in re-
sponse to someone’s need for some ad-
ditional I/O or memory. With prices low
but shipping costs high, especially for
heavy cases and power supplies, this strat-
egy makes a lot of sense to me.

Of course, if you need a card, system, or
docs let me know! For instance, Michael

34

Griffin of Tillsonburg, Ontario Canada
writes:

*‘Some months ago, I was given an old
Compupro 8/16 in a pair of 19>’ rack
mount cases. Unfortunately, all of the
documentation and floppy disks had been
thrown out some time before [a common
situation - Herb]. The computer, how-
ever, is believed to be in excellent shape.
Although it was originally purchased
around 1985-86, it saw very little use.

‘I would like to obtain information about
this system, the cards listed below, and
about S-100 Bus computers in general. [
don’t know enough about this system to
even successfully fire it up. It contains
the following boards:

Compupro: CPU 8085/8088 [a dual pro-
cessor card], M-Drive-H [a RAM disk],
Ram 23 [static memory card], System
Support 1 [a general purpose I/O card,
including the console serial port],
Interfacer 3 [a hard disk controller], Disk
1A [8" and 5" floppy disk controller].
Also, Tlluminated Technologies, this may
be a special video card; and SSM 104
[another I/O card] and a number of cus-
tom boards which I do not intend to
worry about for now.

““The disk drive unit contains an 8’
floppy drive and a 40 Meg Quantum
Q540 hard drive [5-inch]. The operating
system used was CP/M 2.2, I think [it
could also have been CP/M-86, it can
run either].”

Michael, I have a system very similar to
this and I have some docs I can share
with you: I'll contact you shortly in de-
tail. I can provide a CP/M 86 boot disk,
I believe. Anybody know about the “‘11-

luminated’’ card? Also, Michael doesn’t
mention the hard disk controller in his
list, Compupro used a Disk 2 or Disk 3,
which may include a second card for
DMA (direct memory access, a bus con-
troller to speed up data transfers). Any
5.25" disk controller will have a number
of 20-pin connectors and on¢ 40 pin
connector.

Thanks to Kenneth Kutalek of Ever-
green, CO; Larry Cameron of Austin,
TX; for sending their lists of stuff to me.
I'll see what I can do to help.

John Butler of London, England (!)
writes to ask if I know about changing
the Osborne Executive built-in disk
formats. He wants to read Kaypro for-
matted diskettes, but he says the
Executive’s BIOS has *‘private codes’
in the Disk Parameter Block beyond the
typical ones, and he can’t find the right
combination! He also wants “‘a driver
for hard disks: I know Trantor, etc., did
them, but they never published. To im-
port, paying customs duty and insurance
is hell - much simpler to buy the code if
available. A CD-ROM would be even
better!”’

Sorry I can’t help you, John. It is not an
S-100 system, and I know it only by
sight. You scem to know the basics of
BIOS and disks; you might try to get the
BIOS source code and attempt to inter-
pret the private codes. You might try to
get on the FidoNet’'s CPMTECH echo
and make your request: there is likely a
BBS supporting FidoNet in your general
area.

Gregory Nakshim suggested to me that

Stan Veit’s book, The History of Per-
sonal Computers, is a helpful reference

The Computer Journal / #64

on S-100 computers and related systems
of the era. It sells for $19.95 soficover,
$24.95 hard. See References for the pub-
lisher.

New capability: papertape!

In the old days....when personal com-
- puters first came out, there were NO
peripherals available, other than what-
ever could be scrounged from mid-1970’s
industrial technology. At that time, small
data storage was on paper tape (figure
-0), a sturdy medium consisting of 1-inch
~ wide paper rolls punched with a series of
8 data holes to represent a byte and one
““feed hold”’ of smaller size. The most
common type of readers and punches
were on Teletype terminals, but main-
frame computers and industrial control-
lers of mills and drills also had these
devices.

I attended my first New Jersey hamfest
(radio amateur flea market) in mid-Oc-
tober, and I was finally able to acquire a
papertape reader/punch from a Heathkit
H-11 (aDigital Equipment PDP-11 com-
puter) system. After I test and interface
(parallel) it, I should be able to provide
papertape to all those classic system

owners who have been waiting for 4K
BASIC for the last 15 years! By the way,
does anyone out there have a box of
papertape for me?

Tutorial Topic: methods for building a
BIOS for a disk controller.

Last issue, I described the workings of a
disk drive and disk controller, and I
provided skeletal code for accessing a
disk. Briefly, a diskette has many tracks,
each divided into sectors. The BIOS
(Basic Input/Output System) code in CP/
M provides routines for selecting a drive,
track and sector, and for reading and
writing to a sector. It also has a *‘trans-
lation table”’ to convert sector numbers
from ‘‘physical’’ (as written into the
sector itself) to “‘logical” in order to
improve access times by spreading out
the physical distance between logically
sequential sectors. (Bill Kibler reviewed
very briefly the operation of CP/M and
the building of new systems in his *‘Com-
puter Corner’’ article in issue 62.)

I had hoped this month I could get into
the details of the SD Systems disk con-
troller card and how to use a combina-
tion of CP/M and shareware utilities to

create a new system from an old disk
system. However, after scanning previ-
ous issues of TCJ, and after reviewing
my hours of work on my IMSAI-based
S-100 development system, I realized I
need to cover the background of CP/M
system development and of the bootup
process, as well as describe some “‘se-
crets”” of CP/M development and some
key shareware utilities.

So, I will try to work ‘ ‘backward®’, from
the issues of tracks and sectors on the
diskettes; to the layout of CP/M on disk
and in memory; to how CP/M gets loaded
and started. I’1l also cover some of the
features of CP/M programs like ASM,
DDT, SYSGEN and LOAD; as well as
DU or DUU, the famous disk utility pro-
gram that you must have to do any use-
ful work on disk development! (Check
any CP/M system or utilities supplier for
a copy.) Throughout this article, I will
sprinkle some ‘‘hints’’ about
manufacturer’s variations in the features
and capabilities I'll describe. You may
want to ignore these hints if you are new
to this material, and reread them later.
You can read the Sidebars for details of

_the memory image to a file called

; v oontents of afilein both hex and ASCII

Hwill‘ create in .lowu‘memo“ry a3k
 version of CP/M, followed by a save of

*CPM32 COM Use DDT or DU to

DUMP: 2 cPM utilit o dlsplay the

“““ CPM UTILITIES
ﬁle Cautlon it wxll load the file 1nto the

_ memory referred 1o in the HEX address

records, which may wipe out whatever is

there, Use DDT and an offset to load
into a different memory area. For

example 2 HEX file with the record
nnlOOOnmmnnnnn

will load into location 1000H -with

. LOAD, but with the DDT command

1F100
1sadec1mal coumof 128bytesegments P

_1 (sctors on an 8" SSSD disk). This it will load ino O100H insicad (100 +

1000 = 10100, interpreted a5 0100).

-DDT: CP/M debugger Commands of '
: note are:

1ﬁlen com indicate file “ﬁlen com
-~ for loadmg or writing

~ addresses they contain; .COM and
-others into address 0100H plus the

| How does DDT work? Among other

r1000 . read the mdlcated file iu‘!fo
memoxy, offset its loading address by -
1000H (HEX files are read intothe

offset.

"C exit DDT, retum to CPM
prompL S

things, it uses a software reset
instruction, RST 7 (07H), to return
control to the debugger at convenient
points in your code. We will use this
feature to test the boot code.

ASM CP/M Assembler

ASM fleabe assemble file
A:FILE.ASM, create hex file
B:FILE.HEX and llstmg file

The Computer Journal / #64

35

the basic features of CP/M and of the
utilities.

I should say that a series like this could
go on forever with excruciating details
and asides. The more readers who con-
tact me with their reactions the better,
even if to only say ‘‘great!’” or *‘yuck!”’.

. T'will confide to you (don’t tell anyone!)
that it can be discouraging to write about
an 18-year-old operating system without
receiving some feedback!

Disk hardware: This article series will
presume a typical 64K (RAM) S-100
system with 8-inch, single-sided, single-
density disk drives and controller. The
8" SSSD diskette has 26 sectors per track,
77 tracks, and each sector holds 128
bytes for a total capacity of about 256K
bytes. Other diskette densities and sizes
will perform similarly but have addi-
tional complications, such as density
detection and a variety of system track
layouts.

My current controller is a Morrow DJ2D,
with its own serial port and ROM; the
“new’’ controller I'm adding is a SD
Systems Versafloppy II controller, with
neither ROM nor serial port. I have the
sources for the SD Systems BIOS, but
they required much rewriting and lifting
of code from other controllers, most

notably the original Tarbell single den-
sity 8" disk controller.

Recommended reading and software:
The Digital Research CP/M manuals
describe the operation of all their utili-
ties and the process of BIOS develop-
ment. If you do not have these, search
your local libraries for old CP/M books
or books on particular CP/M machines.
Or, contact me: if demand warrants it,
may write a more complete description,
or find a cache of CP/M documents!

In principle, you should only use one
copy of CP/M at a time! And, you should
have a serialized licensed diskette from
Digital Research. If you need one, I have
some for sale; other vendors in this
magazine will also sell you CP/M. (Hint:
some of this series may also apply to the
Z-System, but I don’t have enough expe-
rience to verify this personally.)

Boot-up operations

For most systems, there is a small bit of
ROM (read-only memory) buried on
some card that is * ‘jumped’’ to at power-
up or reset (see figure 1). For our pur-
poses, this code eventually loads in some
“boot’’ code from a floppy diskette,
which will in turn read in the *‘system”’
code on the disk containing CP/M and
the BIOS that is particular to your sys-
tem. Because the first track of the disk
(track 0) is the easiest to find, the boot

code is contained on track 0, sector 1.
The system code will follow, on the rest
of the sectors of the first track and for all
the sectors of the second track. Figure 1
shows a layout of these two tracks for an
8" SSSD diskette. (Hint: different manu-
facturers may use slightly different
schemes! Use DU (See Sidebar) to get
familiar with how YOUR boot tracks
are laid out!) The boot code in the first
sector is read by the ROM (1) into a
convenient memory area (usually address
0) (2) and executed. The boot code in
turn reads the rest of the sectors (3) into
the high end of memory (4) and then
jumps to the CP/M starting address (of
the code just read in) to initialize and
run CP/M. (Hint; some systems follow
this sequence with the load of a more
complicated BIOS from a file.)

This division of tasks is intended to
minimize the ROM requirements of the
disk controller, and to make it easy to
modify the location of the operating sys-
tem. The boot code on disk is changed to
create a new loading address for CP/M,
and the operating system and BIOS are
changed to support operation in the new
area of memory. In the days when
memory was not cheap and ROM code
features were far from standard, this flex-
ibility was essential.

To modify CP/M, the program
MOVCPM created a new ‘‘image” of
the operating system which ran at the

. CCP: Console Command Processor.
Similar to the COMMAND.COM of
'MS-DOS and the ‘‘shell’” of UNIX,
 this code receives commands from
the console terminal and either calls

. the internal CP/M commands (DIR,

i{,_ware mdependem and. can be relo-
l "?‘}f‘cated w1th MOVCPM

tem, Thxs controls the opening and
“closmg of files, -access to devices,

_ DEL, REN) or calls external pro-
. .grams of the form nnnnnnnn.COM,
~ where “‘nnannnn” is a filename of

»and converts operatmg system re-

CP/M INTERNALS

g quests to calls to the BIOS. Thls code is
* hardware independent, and can be relo- -

cated with MOVCPM.

'BIOS: Basic Input Output System. A

collection of hardware-dependent code
for disk access by track and sector, and

“device ‘access.: Each manufacturer or
developer must adapt this code’ to their
particular hardware. This code may be

relocated by a manufacturer-modified

- version of MOVCPM check your ver-

sion,

~ jump table: At the start of BIOS is a
series of JMP instructions to & defined

set of capabilities in a defined order,

using the 8080 reglsters to return ap-
propriate values.

*‘Synchronization error’’: When you
try to usc a utility from one CP/M -
with another copy of CP/M, particu-
larly the utility MOVCPM, you may
see this message. Each CP/M BDOS
{(CCP?) has 4 serial number embed-
ded within it that is matched by some
of the utilities.. A failure to match
causes the utility to stop and produce
this message. Either use a consistent
copy of CP/M or modify the serial
number (the latter I leave to the reader
for now!).

36

The Computer Journal / #64

desired memory size. To modify the
BIOS, the user re-assembled it at the
desired memory size as well. (Hint: some
MOVCPM’s will also re-address the
BIOS code as well as CP/M, so
reassembly is unnecessary.) Tradition-
ally, DDT was used to ‘‘glue’’ these two
together in memory, and SYSGEN was
* used to copy them to the boot tracks. (I'11
use DU instead!) Figure 2 shows typical
addresses for CP/M’s CCP, BDOS, and
the BIOS for a 56K RAM machine. (Hint:
CP/M systems with double density or
larger sector sizes have more room for
both a bigger boot program and a bigger
BIOS, so these addresses can vary! Read
your docs and prowl through your cur-
rent system with DU.) See the Sidebar
for more details on MOVCPM, DDT,
DU, and other terms.

Adding a new disk controller

CP/M was a success because of its unique
ability (at the time) to be adapted to any
Intel 8080-based system with appropri-
ate hardware: RAM memory available
from address O on up, a disk controller,
and a serial port. The operating system
itself (CCP and BDOS) were ‘‘movable’’
without re-assembly by the use of
MOVCPM, a program that would modify
the code addresses within CP/M, to al-

low the code to run at the top of what-
" ever memory was available. To add hard-
ware, a manufacturer (or even user!) need
only write a BIOS of a standard form,
including at the start of the code a jump
table: a series of JMP instructions to
routines that return after doing standard
things, including the disk operations I
described in my previous article; as well
as console (terminal) and printer opera-
tions.

For this series, I'm going to avoid the
hard problem of trying to bring up a
““diskless’ system with a new control-
ler. Instead, I'll show how to add a new
controller to a system which has an-
other disk controller. (Hint: if you have
a ROM-based system that allows you to
modify memory, you can use that to load
and test code instead, from another sys-
tem which acts as a terminal.) How can

The Computer Journal / #64

this be done without interfering with the
old controller and “‘old”> CP/M?

1) The two controllers must not overlap
in memory or I/O space. Shared addresses
will create obvious conflicts. However,
they can share resources, say a serial
port or ROM code as only one operating
system will be running at a time.

2) The original CP/M must run in higher
memory, while the “‘test”” CP/M will be
loaded and run in lower memory; and
these must also not overlap. See figure 2
for a reasonable memory map of such a
configuration, Note that DDT resides
just below BDOS when DDT is loaded,
its size must also be taken into account.
Building a 32K *‘test’” system will give
plenty of room for both CP/M’’s, although
it will be too cramped for any serious
work later.

3) The test controller’s boot sector code
must not load below location 100 or
above the test CP/M’s memory areas.
Location 100H is a reasonable place to
load and execute the test boot code. For
convenience, let’s call the source file for
the boot sector code BOOTDISK.ASM
(this name is not in any manuals!).

4) You have (at least) one drive for the
original controller, and one drive for the
test controller. You can do this on your
current two-drive system by disconnect-
ing the second drive from the disk con-
troller cable, changing the drive’s ad-
dress (usually from *‘drive 1°° to ““drive
0’’) and attaching that drive to the sec-
ond controller. See figure 3 for the lay-
out. (Hint: this scheme allows you the
option of flopping the second drive be-
tween either of the two systems, as re-
storing two drives to your original con-
troller will speed up development.)

5) You will need a bit of code to load in
the boot code from the first sector on the
bootable disk. This code will eventually
reside in ROM, so let’s call it
BOOTROM.ASM. (This name is an
arbitrary name too!) It will be similar to
the disk’s boot code, but it only need
read in one sector and to jump to it. Be
careful it does not overlap the disk’s

boot code, or it will try to load the disk’s
code over itself!

Testing for loading and ‘‘good” ad-
dresses

With this scheme, here’s how you will
test your new controller’s BIOS and CP/
M. First, to verify that your boot code
works and that the BIOS and CP/M are
properly relocated:

1) Boot up your current CP/M on your
current controller. Edit, assemble and
load your new BIOS and disk boot code
BOOTDISK ASM Make sure
BOOTDISK will run at 0100H, and
change the code to jump to DDT after
loading via the RST 7 instruction (see
Sidebar). Move the assembled code to
the system tracks of your test boot disk
(with DU, details on this move later!).
Place your test disk on the test controller’s
drive.

2) Use DDT to load the
BOOTROM.HEX file (the assembled
boot code) and to execute it. The “ROM”’
code will run the other controller and
drive, load the boot sector and execute it,
which will in turn load the new CP/M
and its BIOS into memory below the
“current’’ CP/M. Instead of executing
the code, it will return control to DDT.

3) Examine memory with DDT and
verify that all the code was loaded at the
appropriate addresses. (Hint: for front
panel machines, or machines with ROM
monitors, you might use these capabili-
ties to verify proper and complete load-
ing.) Note any problems. Reboot the old
CP/M system and make appropriate
changes to the code.

4) Repeat steps 1-3 until satisfied with
the operation of BOOTDISK and the
layout of CP/M and BIOS. Then, modify
BOOTDISK.ASM to give control to the
new CP/M after loading it. Assemble

37

and load the new version, and place it on
the test boot disk.

To verify your code is * ‘properly load:
consider the following:

1) A hex dump of the beginning of the
BIOS code looks something like this:

C32173C34473C38273C30174

the *“‘C3”’ is the jump (JMP) instruction;
and the 2 following bytes arc the jump
address, the low byte and the high byte.
For example, the first three bytes shown
above are the instruction ' JMP 7321
The high byte should be consistent, start-
ing low and changing by one after a few
“jumps’’. If you use DDT to look at
these in memory, the code should be
located in the same area as the first few
jumps. That is, the first few BIOS rou-

Sharewareutlhtws S

istian’s Disk
allows you to
or séQiiéntml sec-

»:f;' '_f'o, mthebuffer write it, go to the
next sectoron disk, and repeat this

38

tines usually reside at the beginning of
the BIOS area; in this case at 7300 and
above. If you see an inconsistency, you
have cither loaded the BIOS into the
wrong area, or you assembled it for the
wrong area.

2) A similar rule of thumb applies to CP/
M. If you use DU or DDT to look at the
first bytes of CP/M on the boot tracks,
you’ll see something like the following:

C3nnnnC3nnnn ... *OoCxx....."

(more code) * COPYRIGH*
t (c) 1979 DIG
*ITAL RESEARCH *

(zeros)

This marks the beginning of CP/M CCP.
Look at the jump addresses in this area,
and see if they are consistent with where
the CCP will eventually be loaded. BE-
WARE that DDT will overwrite the CCP
area, so you can’t use DDT to look at the
CCP in memory! However, you can use
DDT to look at BDOS and BIOS.

Once you are confident that loading and
addressing is correct, use a similar
scheme to the above to test and execute
the new BIOS and CP/M. Run simple
CPM commands like DIR, then STAT.
PIP a large collection of files, using the
[v] option to verify them. Then, ASM a
few files. I like to use the shareware
utility CRCK (checksum) to read all the

files and write a file of checksums as a
test of CP/M operation.

Summary

We have reviewed the features of CP/M
relevant to BIOS development, * ‘walked
through’’ a development cycle and de-
scribed the layout of memory. Next time,
I'll show more specifics of the two disk
controllers, particularly the SD Systems
Versafloppy Il card, and its BIOS. T have
several of these cards available if anyone
is interested in following along on their
S-100 system!

References

I am curious: does anyon¢ use these
addresses? Please contact me and tell
me! They are here to encourage contact
and assistance: use them!

John S Butler, 16 Uphill Drive, London,
NW9 0BU England. phone 081-204-
7203.

Michael Griffin, Apt 207, 182 Lisgar
Ave, Tillsonburg, Ont. Canada N4G 4L2

The History of Personal Computers by
Stan Veit. Published by Walt-Comm
Press, 65 Macedonia Rd, Alexander NC
28701. (704) 252-9515.

TYPlCAL CHARACTER

r
PIN

ASCl ASCI BlT 8

3”4 BIT6 ARH
FEED

END OF TAPE
FINISH \
000~J0 O 7 Ascil CODE
0000 O g PER FIG. 6-1
]
o 0 of o
000000000 | DEL TAPE 1S 1 WIDE
o 3 o | M WORD PITCH 1S 0.1"
o o o 5 WORD SPACING 15 0.1"
06 o Sol ¢ CODE HOLES ARE 072"
oo s 5 FEED HOLES ARE 046
O Co co E
Q0o 00 F
0000 0ot 6 REPEAT "RUBOUTS"
o g Oo H OR "DELETE™ 111-111
°, oo go J' SHOULD PRECEDE AND
9 e8¢ ; FOLLOW TAPE CONTENT.
(o) -Ne)
FRONT OF TAPE

(START)

Figure 0: Papertape.

The Computer Journal / #64

0100

B0OO

CS500

D300

E0CO

FFFF

sequence of system code on disk.

5D00
6500

7300

7900

BS00

BD0O

C500

D300

E000

Track Sector Address
0100
B00O
C500
D300
E00O

Boot Code
TPA
cCP
BDOS
BIOS
ROM
0 1
0 2
0 18
1 20
1 26
Figure 1. The boot-up process, with rep-
resentations of code in ROM and the
cCP
BDOS
|_NEW System
32K
BIOS
DDT
DDT when active]
CCP
| OLD System
s6K BDOS
BiOS
ROM

FFFF

Figure 2: The memory map of CP/M.
Also the BIOS JMP table. Two memory
maps, one for 32K development and one
for maximum memory with the DJ2D.

The Computer Journal / #64

1. ROM reads boot sector

Boot Code
CCP 2. Boot code loaded in low memory
BDOS 3. Boot code reads system data
BIOS 4. System loaded in high memory
End of BIOS
NEWdiskcard |_
— QLD digccard
—0Q
CPU
; RAM Drive for
Drive for Old system
new system
S-100
System
ﬁ
Terminal

Figure 3: hardware configuration for
development. Two disk controllers, two

drives.

39

ecial Feature
 Intermediate uslersm

What is Available -

SMALL -C ?

Introduction by Bill Kibler

Some issues back, I broached the subject of a magazine en-
dorsed programming language. The idea was to use some
standardized programming environment and language for all
articles. The magazine would make it possible that this choice
would be available for all platforms we support. Thus, it would
provide all our readers with a learning and working set of
language tools at an affordable price. Currently, there is no
known standardized language available across all platforms.

Forth is probably the closes language that actually attempts to
be similar across all platforms. Even still, there is not a single
version of Forth that works completely the same on all plat-
forms. Many of the older classic systems came with BASIC in
ROM or on disk. The BASIC’s were not anything approaching
implementations of a standard. You can expect each BASIC
platform to require major changes in coding to move from one
platform to another.

For teaching, PASCAL is considered superior. The structured
design of PASCAL was intended to teach programming lan-
guage concepts and practice. Several implementations have
proven that the language can also be used quite successfully
“outside of the educational environment. The company Borland
rode to success on their Turbo Pascal implementation for CP/
M and later MS/DOS. Turbo Pascal’s success in part is also the
integration of programing and editing tools in one package.

Unix users have come to enjoy using C and find many features
they consider superior to any other language. Of interest to us,
is the migration of C, back to smaller platforms. Ron Cain
implemented a version for small platforms with the intention
of teaching users about C. That version was called ‘‘Small-C”’
and was explained in a book about the language. Since this
version was very small and self compiling, many options and
features were not provided. The basic set of functions however
was easily ported to other platforms.

Since the direction at The Computer Journal is to teach our
readers how to perform simple and basic tasks using tools
suited to their platform of choice, finding a language has
become an important decision.

One language that has been broached is of course Forth. I am
a long time user of Forth and have seen many items available
which might make it our best choice. There are BASIC and

PASCAL interpreters that ran under F83 Forth. I am aware of
projects to create C interpreters using Forth platforms. Forth is
also available in several versions of C source for use on UNIX
and LARGER platforms. A new version of Forth for embedded
controllers, EFORTH, is just about ported to all platforms. This
might give our readers an across the board single implemen-
tation,

Since all users are not especially fond of Forth, an alternative
language and options should be considered before making any
long term choices. I proposed that Small-C might be that
alternative. Current Small-C implantations are fairly exten-
sive, but have the same problem as Forth, major variations
between platforms. Since my experience with these variations
of C is limited, I have turned to our readers and writers for
input. Not all our readers feel strongly that even C would be a
good choice. Some experiences have shown the problems that
need to be addressed.

What follows is most of what has been sent to me to date. have
added index summaries of the C Users Group listings of the
disks on which Small-C versions are to be found. I did not list
any of the utility programs that have versions for the Small-C
language. I found at least 10 to 15 disks that have separate tools
for Small-C users. This last fact should be considered as a plus
for using Small-C. Accessory tools arc very important to any
language and having tools already done must not be over
looked.

Lets hear then from our writers and readers in this first install-
ment of “‘to C or not to C?”” (Sorry for the pun..but have fun....
Bill Kibler.)

Dear Bill:

I’'ve been thinking about this controversy that seems to have
come up regarding the code for the serial gizmos Walt wants
to design. While the Forth that Brad Rodriguez and Frank
Sergeant write is pretty readable to me at least, in the past I
have had terrible problems with reading Forth.

But, as you mention, assembly takes up too much space, and

Pascal would be too cumbersome for the project to be written
in. I don’t like pseudocode, because it isn’t the real code, and

The Computer Journal / #64

when you actually try to write something, little gotchas always
come up.

[have two ideas. First, we write a Pascal-to-Forth or Small-C-
to-Forth translator, in Forth, to allow conventional block-
structuring, top-down, algebraic coding. Really, it isn’t Pascal
nor C, though, but a preprocessor/reformatter that does not
change Forth at all, but reorders and reformats the statements

'so that they look conventional.

The bad part about that idea (which is not a new idea, by the
way), is that the Forth folks won’t like it (*‘it just isn’t Forth™),
nor will the Pascaloid folks (*‘it just isn’t Pascal’’). It could be
argued that it really is Forth, however, if you remember Prolog,
there were several different syntaxes for it (‘‘Edinborough”’, **
Clocksin-Mellish™’) which were quite different-looking. Who
says Forth can have only one appearance? The translator could
be written in Forth or in M4, awk, C, Pascal, BASIC, whatever.

OK, then, the other suggestion is to find a way to make the
assembler take less space. One way is by putting multiple
statements per line:
inc dptr : movx a,@dptr : ret

The other way is by using macros. As a long-time assembler
programmer, you know problems with macros: *“What does it
do, again?’’ ¢‘What side effects does it have?’” And when you
forget what the macro does, the macro code itself is unreadable.
And, of course, every assembler has tremendously different
macro syntax, So macros aren’t portable.

We can solve all of the latter problems by writing our own
macro preprocessor in BASIC. Why BASIC? Because BASIC,
is the language most of us have, and it's the most portable

'language we have accessible. You might even be able to run the

preprocessor on an 8052 chip with built-in BASIC.

But why stop there? We can write our own assembler, too! OK,
now I imagine I'm getting carried away.

Have fun!
Rick Rodman

From Tilmann Reh over numerous E-Mail discussions con-
cerning the choosing of a language.

<From June>

Concerning programming languages, I do not like Forth as a
medium to describe some software technique, even if it is very
portable. Most people will be unable to extract algorithms out
of a Forth listing! So we always should use ‘algorithmical’
languages to explain our ideas. The ideal language for this
purpose is Pascal (or Modula), as explained earlier. Every
Forth programmer will be able to port an algorithm from a
Pascal source to his Forth assembler. This does not apply vice
versa. So, the only really portable software language is the
algorithm itself, or anything similar (like Pascal).

BTW(By The Way), your argument that Pascal is too strict for

The Computer Journal / #64

hardware level programming does not apply. Common Pascal
compilers all offer some method to access the hardware di-
rectly. At least you might define subroutines located anywhere
which do some special hardware-related functions, and are
called by really readable symbolic names. From my experience
of programming (high-level and assembler), there is absolutely
no argument against structured high-level languages even when
programming at the hardware level, except for some run-time
limitations in some cases. Instead, software development times
are much shorter when using (for example) Pascal.

<From Late June>

[still am sure that Pascal (or Modula, Ada) are the languages
of first choice if you want to EDUCATE. This because these
languages express the used algorithms very directly and clearly.
If we really want to educate our readers, we must show them
HOW to solve a problem, and not print a listing of a special
implementation which is unportable to other programming
languages! So may I repeat that the structured modular lan-
guages (mentioned above) serve this purpose much better than
any other, even C. Every reader who does programming him-
self will then be able to adopt the used method to the language
of his choice, which is (nearly) impossible with every other
language (I think).

I don’t know a Pascal for OS-9 or Flex, probably because I
never used those systems. But I am sure there must be some-
thing... And if not, see the last sentence of the previous para-
graph.

Last but not least, be aware that there are no efficient C
compilers for microcomputers, especially for the 8-bit world.
The code size and efficiency is so bad that even in this concern
Turbo-Pascal is better. (So you won’t help people with <64k
systems by using C.)

<From July>

I must agree that BASIC is best available for any small com-
puter system. However, BASIC is by far not the right language
for teaching anything. The only thing you can teach with
BASIC is a bad programming style... May I repeat my “‘Gen-
eral Portability Rule’’: You can very well port a Pascal pro-
gram to BASIC, but it will often be very hard work to port a
BASIC program to Pascal (when saying ‘‘Pascal’’, I also think
of other structured languages like Modula or Ada). This is
because BASIC is not strict enough, and uses jump instructions
(GOTO) very often. The only way to educate though using
BASIC, is writing BASIC programs as if it were Pascal! If you
have someone who edits all incoming BASIC programs ac-
cording to this rule, I might as well agree to use this language
more often.

<From August>
I agree that BASIC can also be programmed well-structured.
But the fact is that *most* BASIC programmers *don’t*. I
think it’s not possible to change this, so I would discard BASIC
for our purposes.

a1

I don’t think that Forth is better than Pascal. Nor for real work,
neither for education. May I repeat again (the third time?) that
a Pascal source can be read by everyone and easily translated
to any language of his choice, but this is absolutely impossible
with a Forth program (only if the reader is well used to Forth).
The optimum would be to teach only algorithms, but if we print
programming examples, we should use a language which is
nearest to the algorithm, so *every* reader is able to under-
stand and translate it, if necessary. I think the only language
which reaches this goal is Pascal (or Modula or Ada, which
however are less usual; or structured BASIC, which is possible,
but in fact even less usual).

Sincerely, Tilmann Reh,

Dear Mr. Kibler;

In your ‘Computer Corner’ in the #6l issue of 7CJ you mention
Small-C. Last year I had some experiences with Small C on
a 6809 and I thought I'd share them with you.

I have 4 Small-C’s. The first two are 6809 Small-C’s from the
C User Group. The third is Byte Magazine’s Small-C for MS-
DOS. The fourth is F. A. Scacchitti’s Small-C for CP/M.

The first one I got was Byte Magazines’ MS-DOS Small-C for
the 8088. It is a fairly ‘complete’ Small-C and is reasonably
structured. It has a fairly large standard library.

The two for the 6809 from the CUG aren’t very good. The
carliest one was CUG 132 and is very old and incomplete. The
later one is CUG 309. It is a port of CUG 221. It is much better
but it doesn’t have a lot of library routines. It does however
have an optimizer to clean up some of the terrible code that
Small-C generates. I think there is a bug in the code, but I can’t
remember what.

I only ‘recently” got F. A. Scacchitti’s, so I haven’t done
anything with it.

Most of my experiences with Small-C come from Byte
Magazine’s Small-C. It was more complete than the two 6809
ones I had and I didn’t yet have F. A, Scacchitti’s (CUG 222
& 223). Converting Byte’s from MS-DOS 8088 to 6809 OS9
was reasonably straight forward. (Actually I never finished
with it. Small-C wasn’t complete enough for what I wanted it
for). Converting the output from 8088 to 6809 wasn’t too hard.
Also there were just a few minor changes for my assembler. 1
also had to change a few things because 6809 OS9 requires the
program to be non self modifying and Small-C allocated vari-
ables right into the program section. (I wish all of the stuff that
needed to be changed was in a single file rather than spread
throughout the program.) However, the code that was gener-
ated was terrible.

At this point I began looking for other compilers. I eventually

found Dunfield Development in Canada, but their C compiler
was $50 (including C source) plus $50 for the 6809 generator

42

and it had a few limitations as well. It was better than Small-
C, but not enough to be worth my spending $100. It had code
generators for several CPU’s, including the 6809. The code
generated though was vastly better.

I spent quite some time trying to clean up some of the terrible
code for the stack but didn’t have a great deal of luck. Some
things went fairly easily, but since I didn’t (and don’t) have the
book I wasn’t sure about some stuff and I was just blundering
around in the dark. I also had problems coming up with test
suites to test my modifications.

Ive been trying for months to talk Microware into releasing
the source code for their 6809 OS9 C compiler. They stopped
selling it about 5 years ago, don’t support it, and barely admit
to it’s existence. It is a fairly complete compiler, including
structures. I haven’t had any luck though and I don’t really
expect to. It is a multi-part compiler which reduces the memory
strain for 64k machines. I've examined the disassembly and
discovered that it was self compiled so it would be possible to
regenerate the C source code. It would be a LOT of effort
though. The preprocessor ($27AC), the analyzer ($7B76) and
the code generator ($6444) sections total to about 64K worth
of code. That would be a LOT of tedious trial and error to
regenerate the C source (I did that with the C library, so I
know). It also has a couple of bugs that need to be fixed. If
the source could be obtained it would be a fairly decent general
compiler.

I’ve also tried to track down several others, but with no luck.
That was why in a previous issue of 7CJ I asked if anybody had
aK&R C compiler. I’ve received two, but they are fairly large.
I don’t have a modem or I would check CompuServe, BBSs’,
Delphi, etc. Perhaps somebody might be able to talk the
authors of some of the public domain C compiler’s (in
executables) to release the source code.

If TCJ does decide to ‘sponsor’ a C compiler. I have a few
suggestions.

1. Before any work is actually done on Small-C again, I think
it would be a good idea to put out a ‘call’ on major BBSs’,
CompuServe, computer nets. etc. Looking for a newer compiler
base to work with. It would have to be very small, but maybe
at least it would be better organized than Small-C is. It would
only take a couple of weeks and the results might be substan-
tial.

2: If you do decide to standardize on Small-C, you are going
to have to decide which one. There are a lot of them out there
and most have been ‘extended’ in non-portable ways. Also,
most of them have changes made inside the compiler itself
(cclx.c-ce3x.¢) rather than limiting them to the output part
cedx.c. Most of the changes are for assembler compatibility.
Some might be tempted to suggest using the version in the
book, but most don’t have the book and would have to buy it
for $30. I think that particular version in the book has been
copyrighted so it can’t be shared. If you are going to end up

The Computer Journal / #64

spending money, you might as well buy Dunfield’s for $50 and
make your own processor output (it comes with 8088, you have
to buy others or write your own).

3: The compiler should output P-Code. That way a single
compiler can incorporate all improvements for all CPU’s. To
convert from the P-Code to regular ASM would just require a
simple translator. If you also bracket variables with pcodes
-indicating that it is a variable, that would allow a wide variety
of formats. If you also indicate beginning/leaving function then
you could also easily add custom code in the translator, The
bracketing of stuff would allow for ROM/RAM (after all, you
can’t put variables in ROM), etc. The translator could also take
care of the format of labels etc. That would completely separate
the assembly format and the opcodes from the compiler itself.
Nice, neat, and generic. Isn’t that what you want from a
portable compiler? The only ‘catch’ is there is an extra step
in the compile process; converting the pcodes into assembly. A
simple shell program would handle that. 7C.J could do it sort
of like the FSF does GNU, improvements are regularly incor-
porated into the master version. That would require somebody
to maintain it though. All of this would also make cross
compiling a lot easier. The only problem with pcodes is embed-
ded assembly instructions in it. Again though, pcodes could
bracket it and tell the translator about it. At the very least, all
changes for porting should be limited to CC4x.C and not
spread throughout the whole compiler.

4: Tt might be nice if the compiler was in parts. A preprocessor,
a tokenizer/parser, and a code generator. The C compiler for
6809 OS9 is in 3 parts (listed above) and also has an optimizer,
assembler and linker. Doing things in parts does cause a few
problems, but it allows it to handle larger programs, more
symbols, etc. My OS9 C compiler compiles the Byte Small-C
'to about 29k of code. Small-C compiling itself would be much
larger. That is less than the individual parts of the full K&R
C complier of mine.

5: It really should be expanded to include multi-dimensional
arrays, as well as arrays of pointers, unsigned integers, mul-
tiple levels of indirection pointers, typecasts, sizeof(), etc. Struc-
tures would be nice (and not quite as hard to implement as may
be thought), but could be worked around if you have other C
stuff. The limitations of Small-C are just too great for a person
to WANT to work with it. Improvements to Small-C would
have to be made.

6: A better preprocessor would also be nice.

7: It is going to HAVE to generate better code than the original
Z80 CP/M version. I know that it will be used on a Z80 so better
code would have to be an option, Perhaps a pcode ‘optimizer’
to go through and clean up the stack indexing code for non-Z80
CPU’s. 1 don’t know, but I do know that normal Small-C
generates such terrible code that most wouldn’t want to use it.
They’d probably get better performance from Forth.

8: I think that Small-C should be reorganized. That might

The Computer Journal / #64

make it much more readable and modifiable. Small-C has a
serious problem in that it has been upgraded and had features
added so much that the general structure isn’t good. A lot of
improvement could be made by defining a few labels for the
expression analyzer indexes. Change a few names of some of
the routines to make them more self explanatory would also
help. Reorganize the source into distinct sections, etc. Nothing
major really all of it could be done with a good word processor
and a day or two.

9: There should be some form of register assignment in the
outputted assembly. What I mean is that the compiler should
be able to recognize that not all registers are data registers,
some are address registers. One of the problems with Small-C
is that it was almost hardwired from the beginning for the 8080
and its descendants, the Z8O and 8088. When I attempted to
port it to the 6809 I had some problems because the 6809 has
one 16 bit data register and 3 address registers. The compiler
expected the secondary register to be a data register with
address register capabilities. That caused major problems in
most operations because I couldn’t do math operations or, the
secondary register because it was an address register. Instead,
whenever a transfer to the secondary was to be made I pushed
it onto the stack. That resulted in even worse code and left the
address registers almost idle. As I said before, the Small-C
compiler has some MAJOR problems, A replacement should
be found, or at least major changes to the expression analyzer
should be made.

10: There should be some list of all the features of Small-C as
compared to K&R C. If there is a list of features and abilities
of each, then people would know what needs to be added or
changed. As it is, its just ‘shooting in the dark’.

11: the size of the tables should not be fixed at runtime. Instead
it should dynamically allocate them as needed. That would
involve a number of changes to the tables, but it would allow
a more reasonable approach to the ‘size’ of the programs that
it can compile.

To summarize, Small-C would have some major improve-
ments, If possible, an alternative C compiler should be found.

If Small-C does have to be used, I'm not sure what base to
suggest using, Either Byte’s or F.A. Scacchitti’s. [haven’t
studied FAS’s much, but I don’t really like the way he did the
multiple dimension arrays. Of course, I can’t say I could do
better. FAS’s and Bytes seem to be the same base. FAS’s has
a few additions and Byte’s has more libraries. Byte’s is for
8088 MS-DOS, FAS’s is for Z80 CP/M. Flip of the coin
basically.

1 personally have only one computer, a Tandy Color Computer
3 w/512K, a single 360K floppy, and OS9 and its C compiler.
I can’t really judge what would help other computers. The
operating system is in onc 64K bank and each process gets its
own 64K address space all for itself. That allows larger pro-
grams than other computers that have to have the OS in the

43

same program memory.
Well, I just thought I’d put in my 2 cents worth.

Carey Bloodworth.

P.S. I've managed to learn of the existence of 2 old, portable,
fairly small K&R C compilers. So far I haven’t been able to
actually locate them though. C.B.

Dear Bill Kibler;

Greetings. I see in issue #61 you’re thinking about Small C, so
here is a little material in this arca: a Small C 68HC11 com-
piler/assembler. I can’t say the 6811 would be my ideal embed-
ded processor, but it has its charms.... See README.SC1 on
the diskette for a short description of files, and then there’s tons
of my documentation in there....

At any rate, the interesting thing here is probably the source
files CC4*.C and CALL11.MAC. These are supposed to be the
machine-dependent part of the compiler, although I won’t
swear there isn’t a little stuck somewhere else in the source.
These are the parts you have to change to adapt the compiler
to another target. It's not exactly child’s play, but it isn’t that
hard - you need to know at least a little C, and be familiar with
the target, and of course have a test system.

As for the thing itself, I discuss this in the docs, but it’s really
not the world’s most wonderful program, at least source-wise.
This is partly because of the almost total absence of comments
(I mean, Hendrix probably created it on 128K diskettes); to this
day I usually can’t figure-out what’s going on in there and
Heaven knows, I've tried. Hendrix or someone apparently
referred to it as an ‘‘educational’’ compiler, and this stuck,
leading to years of silly magazine remarks about how it’s so
useful for learning how a compiler works. It isn’t. What I think
was meant was that it was good for schools etc., because it was
cheap/free. Be that as it may, it’s still a useful compiler, and
it is quite feasible to re-target it....

Language-wise, the most annoying thing about it is the absence
of structures (like Pascal records). Otherwise its restrictions are
fairly bearable. I'd still like to get hold of a decent public
domain K&R source with structs and everything - but then it
probably wouldn’t fit on my hard drive anyway....

Bulletin: On my quest to find a book describing the PC hard-
ware, I found *one*: *Interfacing to the IBM Personal Com-
puter*, second edition, by Lewis C. Eggebrecht, $24.95 (1990,
SAMS). I've shelved my DMA project for a while, so I haven’t
put it to a real test, but it *looks* pretty good. Genuine timing
diagrams, schematics, register descriptions....

J. G. Owen, South Huntington, NY.

Small C 68HC11 compiler, assembler. (to be found on JW
Weaver's BBS - SEE page 10 - Support Groups.)

Thu 07-22-1993.

This package includes a lot of material, and zip files within zip
files. It is primarily a 68HC11 product, but includes an 8048
assembler.

A good deal of this stuff is derived from products of J.E.
Hendrix, and he may well own the copyright to them, Various
documentation herein elaborates on this. As noted, the docu-
mentation is relatively extensive, including lots of deep thoughts
about Small C, embedded systems, and other fascinating top-
ics.... Note however that neither Small C or C language is
documented in here.

SCI11.ZIP

SC11.DOC describes compiler operation, including
essays on the meaning of things.

README.SC1 this file.

SC11SRC.ZIP

CC*.C etc. source for 68HC11 Small C (TC 2.0).

SC11.EXE the compiler.

GOODBYE.* demonstration project.

EDIR describes some of the files, short history
/notes on project.

XMAC.ZIP

MACOP.DOC describes assembler, linker operation,
with much digression.

M6811.EXE 68HC11 assembler.

M48 EXE 8048 assembler.

LNK EXE linker,

BS.EXE symbol/file converter.

68HC11.MIT op table.

43 MIT op table.

FILES

Files that should be associated with this documentation:

MACOP.DOC This document,
M6811.EXE 68HC11 assembler.
M48 EXE 8048 assembler.
TEST6811. MAC

TEST6811.LB

TEST48 MAC

TEST48. MAC Test files.

T48. BAT

T68.BAT Process TEST* ETC.
68HC11.MIT

48 MIT Configuration files.

LNK.EXE Linker which is supposed to work with
both M6811, M438.
BS.EXE Link-to-Motorola-S-record translator (for 68HC11).

Note that LIB.EXE, a library program which originally was
included with the Hendrix Small Mac package, is NOT in-

The Computer Journal / #64

cluded here, because it almost certainly doesn’t work anymore
with the endlessly-hacked XMAC. However, this documenta-
tion includes some references to the program, and there are
various switches in the linker which relate to it. The LIB
program, including the source, can probably still be obtained
from Dr. Dobbs.

SUMMARY, HISTORY

This document describes the features of an assembler + linker
currently configured for the 68HC11 and 8048 and collectively
referred to as *“XMAC’’ herein. This is a major hack of J.E.
Hendrix’s Small C configurable assembler MAC, which I
obtained through Dr. Dobb’s magazine offer (see REGISTRA-
TION, below). The programs described here run on MSDOS
systems; there used to be CP/M versions, but these have passed
into the land of STAT and DISK R/O ERROR. Great quantities
of this text consist of MAC documentation.

M48

M48 is the 8048-configured version of XMAC. The 8048 is a
very common -- i.e., readily available, cheap, and therefore
obsolete -- single-chip microcomputer originally released by
Intel but now available from many sources. It is typically used
as a micro-controller to provide intelligence for keyboards
(IBM PC keyboards are based on this architecture), printers,
microwave ovens, etc. The 8748 -- a 2K, EPROM version of
the part -- goes for as low as $8 retail.

Developing programs for the 8048 family, even with M48 or
some other assembler, isn’t much fun without some develop-
ment equipment in the $1000 to $7777 range. Also, an 8748/
49 EPROM burner is necessary for small quantity projects.
Nevertheless, it is feasible to write simple programs for the
8748 without debugging equipment, providing intelligence for
small quantity applications with a start-up cost equal to an
appropriate EPROM burner. (Honestly, I haven’t done it; I
designed and built an 8048 emulator -- I forget exactly why --
which I then used on a few projects. Designing/building the
emulator was fun, exciting, and extremely complicated; I had
to buy a better scope just to debug it. 'm not sure I'd like to
try an 8048 project without an emulator.)

See ‘48 MIT”’ -- the assembler configuration table for the
8048 assembler -- for a list of the exact available instruc-
tions.[1]

Mé6811

M6811 is the 68HC11 version of XMAC. Motorola’s 68HC11xx
is an amazing, HC-CMOS based single-chip microcomputer
which includes everything AND the kitchen sink (i.e., timer,
A/D converter, UART, radar-range, etc.). It has a somewhat
enhanced 6800-type instruction set (actually, 6801), but still
reflects the tedious limitations of that architecture (i.e., it’s no
6809). Obtaining documentation may be difficult. Also, sup-

The Computer Journal / #64

port equipment is ridiculously expensive (//this was written in
1987 or so, support equipment since then has become compa-
rable to that for other microprocessors, not cheap, but not that
offensive -- i.e. $1000 to $10,000).

Somewhere in the vicinity of this file may be 68HC11.MIT,
which can provide some guidance as to exactly what syntax I
had in mind for this device; I was attempting to follow the
Motorola specification, but note that specifically- Motorola
conventions are always overthrown for Intel conventions --i.e.,
“LDAA #12H”’, not “‘LDAA #$12"’ (actually #$12 probably
works now). :

BS

BS is a program that translates the output of LNK into a
Motorola S-record (i.e., BS, ‘‘Binary/S-record’’, of course). In
addition, it can create files suitable for downloading to the
TECI 6811 emulator.

James Gregor Owen
Huntington Station, N.Y.

C USER GROUP
The Following is information on what the C User Group has
for the Small-C implementation. The information was re-
moved from the Small C Users Group CD ROM.

Important files and directories:

cug_info.txt Info about the C Users Group
capsule.txt Capsule descriptions of each file in
Volumes 100-299
catalog.txt Catalog of each CUG Library volume
listings\ Source code listings from
The C Users Journal
vol 100\ CUG Library volumes 100-199
vol_200\ CUG Library volumes 200-299
vol 300\ CUG Library volumes 300-364
zipped\ All the CUG Library volumes compressed
in zip archives
bbs\ BBS support files
Can be purchased from:
The C Users Group

1601 W. 23rd St. Suite 200
Lawrence, KS. 66046
+1-913-841-1631

Walnut Creck CDROM

1547 Palos Verdes Mall, Suite 260
Walnut Creek, CA 94596
1-800-786-9907, +1-510-786-9907
FAX +1-510-947-1644

45

CUG104 -

CUG104.27-C1.C By Mike Bernson, Ron Cain. Small C-Part
1. Main line and opening text plus #include, #if, #nif, crror
summary! dumping extern, and static area for a Small C
compiler. Executable image on disk. ->ASSEMBLE.COM,
LINK.COM. [CP/M:BDS v. 1.41] This Small C is NOT self-
compiling and requires special assembler and linker which are
available ONLY in executable form.

CUG132-

This file covers the 6809 implementation of Ron Cain’s Small
C compiler and a graphics driver/support package for the
Radio Shack Color Computer.

To make it:

You must have a functioning version of BDS C on drive A.
Move the submit file bldc.sub onto drive A with this disk in
drive B. Submit bldc. If all goes without error, you will need
to answer the questions at the end of the link phase as to which
files must be searched. Input canew in response to the first
question, cb to the second, ... , ce6809 to the fourth and the link
should complete leaving canew.com on drive B. You will
probably need double density drives (1/2 meg) to build on drive
b or will have to shuffle the compilation and link operations,

CUG146 -

CUG146.11-SMALLC.C v 2.0 By Serge Stepanoff, Ron Cain.
Small C compiler for 6800. A version of Ron Cain’s Small-C
adapted for the 6800 micro under TSC’s FLEX operating
system. Initial conversion was done ona PDP 11 running RSX-
11 and the DECUS (public domain) C compiler with Small C
code from DECUS. Ongoing development of this version is
being carried out on a SWTPC 6800 with dual 8 inch floppies
and 32K RAM. [Flex v. 2.1:Small C] The TSC assembler
accepts any length labels but only the first 6 characters are used
and saved in the symbol table. Therefore, if you have either
functions or labels of the type MODULE1 and MODULE?, the
assembler will generate a multiply defined label error. Make
sure that the first 6 characters are unique.

CUG156 -

CUG156.08-C80V.C v. 1.2 By Ron Cain, James Van Zandt.
Small C Compiler with Floats. z80 Small C Compiler with

floating point math. Executable image is included so that
compiler is self-compiling. Produces relocatable assembly for
ZMAC & ZLINK (also on the disk). ->CUG104, CUG115,
CUG132, CUGI146, CUG163. [CP/M:Self compiling]

CUG156.10-CC.DOC C Compiler Documentation. Documen-
tation for the z80 Small C Compiler with floating point math.
->C80V.C. [CP/M:Self compiling]

CUGI163 -

CUG163.01-CC11.C By J. Hendrix, Daniel R. Hicks. Small C
v. 2. Small C Compiler by J. Hendrix adapted to MSDOS
environment. [MSDOS:Small C]

CUG200 -

SCI - Small C Interpreter

This Small C interpreter by Robert Brodt (NJ) is a shareware
package available only as an executable image for PC-Clones
and is accompanied by two extensive documentation files. A
useful learning aid. [share2]

CUG200.05-SCL.EXE 1.5 executable

Small C Interpreter. By Bob Brodt. A small C interpreter,
designed to introduce C. Includes a screen editor, & debugger.
=> USERMAN PROG MAN. [MSDOS:] Requires 64K of
memory.

CUG200.06-SHELL.SCI 1.5 source
By Bob Brodt. The command shell, written in SCI’s dialect of
C. => USERMAN.

CUG200.07-USER.MAN doc

Small C Tutorial. By Bob Brodt. SCI users manual describing
shell, editor, language, library functions and debugger. =>
PROGRAM.MAN.

CuG221 -

6809 C For Flex

A rewrite of Ron Cain’s Small C targeted for 6809 processors
running under the FLEX operating System. Dicter Flunker
(Italy), has expanded slightly on the language subset imple-
mented by Cain and includes a peephole code optimizer. [pub-
lic]

CUG221.07-CC1 TO CC91 2.3 source

Small-C compiler for 6809 FLEX By Pieter H. Flunkert, Ron
Cain. Small-C compiler which produces 6809 assembler out-

The Computer Journal / #64

put. This volume includes both C source and compiled output
(as optimized assembly source). 6809 FLEX: VAX VMS C.
Requires TSC relocatable assembler, library generator and
linking loader.

CUG221.35-README.DOC doc

Documentation of the disk contents

CUG222 -

Small C for CP/M Doc and Exec

F.A. Scacchitti’s (NY) significantly enhanced version of J.E.
Hendrix’s Small C v2.1. This CP/M implementation handles
global initialization, external statics, the ternary conditional
operator, multiple levels of indirection, global multi-dimen-
sional arrays, arrays of pointer, hex and octal constants, and
nested includes. Also includes an expanded standard library.
Contains the exccutable COM file, relocatable libraries and
user documentation. Source is on CUG223. [public]

CcuG223 -

Small C for CP/M Source The source code for a Small C
compiler. A full description appears with the entry for CUG222.
To construct the compiler you must have an M80 compatible
assembler. [public]

CUG223.02-ABS.C source
By F.A. Scacchitti. Returns the absolute value of an integer. =>

CUG 222. [CP/M: Small C]

CUG223.139-ZZBUF.MAC source
By F.A. Scacchitti. Used to preserve standard CP/M buffer for
input arguments. [CP/M: M80]

CUG223.140-ZZFIO.MAC source
By F.A. Scacchitti. File I/O storage variables. [CP/M:]

This disk contains a total of 140 Source files!

CUG309-

README.DOC for CC09 MSDOS C COMPILER

Brian Brown, Senior Lecturer, Software Engineering, Central Insti-
tute of Technology, Schoo! of Electronic Engineering, Private Bag,
Trentham, Upper-Hutt, Wellingon, New Zealand

15th November 1989

The Small C Compiler for 6809 running on FLEX (CUG 221) has
been ported to MSDOS, and changed to allow creation of embedded

The Computer Journal / #64

target software. It supports the ASxxx group of assemblers (CUG
292) available from the C users Group, as well as the Motorola AS9
assembler.

A host of routines is supplied. These work with particular boards
used by our students. The system we have is,

6809 Processor card, 32k StaticRAM 0000 to 7FFF. Addresses
9000-93fT are port mapped to 000 to 3ff for PC type boards. Ad-
dresses 8000 to 8fff are mapped to BOOOO for PC monochrome cards.
On board ACIA, MC6850 at AO00 (ControlReg) A001 (DataReg).
OnBoard EPROM or StaticRAM C000 to FFFF

The processor card drives an IBM-PC backplane with four expansion
sockets, thus can talk directly to standard PC cards. The routines for
this board are ACIA.H, MEMORY H, STRINGS.H

Standard PC Serial Card (SERIAL.H)
Standard Hercs/Monochrome card (HERCS.H, PRINTER.H)

32bit Digital /O card, plus 8 channel A/D (0808 chip). The mapping
arrangment of this board is,

Port 220h A/D Channel register

Port 221h A/D Data register

222h A/D End Of Conversion signal

223h Simple latched /O

224h 8255 PPI Port A

225h 8255 PPI Port B

226h 8255 PPI Port C

227h Intel 8255 PPI control register

In conjunction with this board, a panel comprising,

1 x 7 segment display

1 x 8 LEDS

1 x 8 Digital Switches

1 x 16 hexidecimal keypad

is used to allow students to write software routines. (DIOBOARD.H,
MCRDRV.H) A magnetic card swipe reader attaches to port C of the
DIOBoard.

The DIOBoards address is configurable via DIP, and the A/D con-
vertor can be:

- strapped for auto restart, EOC signal restarts ADC

- software polled via EOC bit status

- Interrupt driven, by staps which connect EOC to IRQ2 to IRQ7

The POD SOFTWARE is a simple board MC6821 which has a
40PIN DIP which plugs across the 6809 target processor. By writing
to the MC6821 (which connects to DIOBoard) and setting certain
pins, it is possible to alter the processor state (ie, RESET, HALT)
and perform READ/WRITE cycles (by emulating bus cycles assert-
ing pins mapped to processors pins in correct sequence).

All the available items are available from us at reasonable cost, eg,
US funds. We are also currently working on MC68000 and 18051
processor boards.

IF YOU RE-COMPILE THE SOURCE, USE A MEDIUM MEMORY
MODEL!! AND TURN OFF WARNINGS

* Please note these disks have many more files than listed. ***

* Only shown are samples of the data to indicate content. **
ke o e s e o s o o b ok ok ok o o e i el o ook ek ok ok o ke ol ok o o ke o o ok ok o e ok ok Ok oK

47

MOVING FORTH
by Brad Rodriguez

Part 4;: Assemble or Metacompile?

““Keep it SHORT!"’ was the editorial directive for this install-
ment. So I apologize for postponing the source listings to yet
another issue. In the meantime, there is a new decision to
contemplate:

How do you build a Forth system for the Very First Time?

You know now that most Forth code is high-level ‘‘threads,”
usually compiled as just a series of addresses. In the early days
of fig-Forth, assemblers were often the only programming tools
available. This was fine for writing Forth CODE words, but
high-level threads had to be written as a series of DW direc-
tives. For example, the Forth word

:MAX (nn-n) OVER OVER < IF SWAP THEN DROP ;

would be written [TAL80]

DW OVER,OVER,LESS,ZBRAN
DW MAX2-$

DW SWAP

DW DROP,SEMIS

MAX2:
Later, as working Forth systems became widespread,
Forthwrights began modifying the Forth compilers into cross-
compilers [CAS80]. Thus with Forth on your CP/M machine
(or Apple I1, or whatever), you could write Forth programs for
some other CPU...up to and including an entirely new Forth
system for that CPU.

Because they create a new Forth from within Forth, these are
often called metacompilers. Computer science purists object to
this, so some Forthies use the terms ‘cross-compiler’” and
“recompiler.”” The difference is that a recompiler can only
generate a new Forth for the same CPU.

Most PC Forths are now produced with metacompilers, but
opinion is divided in the embedded systems arena
[TIN91,ROD91,SER91]. The arguments for using assemblers
to write Forth are:

1. Metacompilers are cryptic and hard to understand, and you
must thoroughly understand a metacompiler in order to use it.
2. Assemblers are understood by the average programmer.

3. An assembler is almost always available for a new CPU.

48

4. Assemblers handle many optimizations (e.g. short vs. long
branch).

5. Assemblers handle forward references and peculiar address
modes; many metacompilers don’t.

6. Assemblers use familiar editing and debugging tools.

7. The code generation is completely visible -- nothing is
“‘hidden” from the programmer.

8. It’s easier to tweak the Forth model, since many design
decisions affect the internals of a metacompiler.

The arguments for metacompilers:

1. You write ‘‘normal”’ looking Forth code, which is easier to
read and debug.

2. Once you understand your metacompiler, you can port it
casily to new CPUs.

3. The only tool you need to acquire is a Forth for your
computer.

The last is particularly applicable to those who don’t own PCs,
since most cross-assemblers require PCs or workstations these
days.

I've written several Forths each way, so I’m painfully aware of
the tradeoffs. 1admit a preference for metacompilers: I find the
Forth code for MAX much casier to read and understand than
its assembler equivalent. Most of the arguments against
metacompilers have been overcome by modern *‘professional”’
compilers, and if you’re using Forth for work I strongly recom-
mend investing in a commercial product. Alas, public-domain
metacompilers (including my own) are still behind the times,
clunky, and arcane.

So I'm going to take a radical position for a Forth programmer,
and tell you to choose for yourself. I'll publish the 6809 code
in metacompiler form, and I'll supply a metacompiler for F83
(IBM PC, CP/M, or Atari ST) [ROD92]. The Z80 code will
be written for a CP/M assembler. The 8051 code will be
written for a public-<domain PC cross-assembler.

Forth in C?

No discussion of this topic would be complete without men-
tioning a new trend: Forths written in C. These have the

The Computer Journal / #64

advantage of being more portable than assembler -- in theory,
all you have to do is recompile the same source code for any
CPU. The disadvantages:

1. Less flexibility in the design decisions; €.g., direct-threaded-
code is probably not possible, and you can’t optimize register
assignments.

2. You have to recompile the C source to add new primitives.
3. Forth words carry the C call-and-return overhead.

4. Some C Forths use inefficient threading techniques, ¢.g. a
CASE statement.

5. Most C compilers produce less efficient code than a good
assembly-language programmer.

But for Unix systems and RISC workstations, which frown
upon assembler, this may be the only way to get a Forth up and
running. The most complete and widely used of the public-
domain CForths is TILE (TILE_21.ZIP, file #2263 on GEnie’s
Forth Roundtable). If you're not running Unix, you should
look instead at the Genie files HENCE4TH_1.2.A (#2490) and
CFORTHU.ARC (#2079).

To continue the previous comparison, here’s the definition of
MAX from HENCE4TH [MIS90]. 1omit the dictionary head-
ers for clarity:

_max() {
OVER OVER LESS IF SWAP ENDIF DROP }

Instead of assembler, C is used to write the CODE words in the
kernel. For example, here is HENCE4TH’s SWAP:

_swap({

register cell i = *(dsp);
*(dsp) = *(dsp + 1);
*dsp+ D=1

}

(Please note: there is quite a variety of techniques for writing

Forth words in C, so these words may appear radically different
in CFORTH or TILE.)

On a 68000 or SPARC, this might produce quite good code.
On a Z80 or 8051, quite the opposite. But even if you plan to
write a Forth in C, you need to understand how Forth works in
assembler. So stay tuned for the next installment of Moving
Forth!

REFERENCES

[CAS80] Cassady, John J,METAFORTH: A Metacompiler
for Fig-Forth, Forth Interest Group (1980).

[MIS90] HenceFORTH in C, Version 1.2, distributed by The
Missing Link, 975 East Ave. Suite 112, Chico, CA 95926,
USA (1990). This is a shareware product available from the
GEnie Forth Roundtable.

[ROD91] Rodriguez, B.J., letter to the editor, Forth Dimen-
sions XIII:3 (Sep/Oct 1991), p.5.

{ROD92] Rodriguez, B.J., ‘‘Principles of Metacompilation,”’
Forth Dimensions XIV:3 (Sep/Oct 1992), XIV:4 (Nov/Dec
1992), and XIV:5 (Jan/Feb 1993). Note that the published
code is for a fig-Forth variant and not F83. The F83 version
is on GEnie as CHROMIUM.ZIP

[SER91] Sergeant, Frank, ‘‘Metacompilation Made Easy,”
Forth Dimensions XII:6 (Mar/Apr 1991).

[TAL80] Talbot, R.J., fig-Forth for 6809, Forth Interest Group,
P.O. Box 2154, Oakland, CA 94621 (1980).

[TIN91] Ting, C.H., ‘‘How Metacompilation Stops the Growth
Rate of Forth Programmers,”” Forth Dimensions XI1I:1 (May/
Jun 1991), p.17.

Interested in a printed-circuit board for the 6809 multipro-
cesor" I’ve been exchanging email with TCJ reader An-
‘drew Houghton, who wants to build 2 ‘‘Poor Man’s
Transputer’” out of the 6809. This prompted some improve-
‘ment and expansion of the original ScroungeMaster I design.
Namely:

2681

b) two parallel I/O ports, using a 6522

¢) memory mapping logic for expanded memory: 32K on

board PROM, 32K or 128K on-board RAM, and 384K of off-
- board (bus) addr&ss space:

. - THE SCROUNGEMASTER II

a) four RS-485 serial ports using two Z8530s, instead of the

The driving pnnc:1ple is still Cheap Parts: I ﬁgum the in-
creased cost of ICs over the ScroungeMaster I.is about $9
(Jameco prices). No PALs. o

Wire-wrapping one of these boards is enough of a headache
--I"d like to avoid wire-wrapping three more. If we can get
commitments for twenty boards, I'll do the PCB Jlayout and
get boards fabricated at a local vendor. If mterested send me
GEnie mail (B.RODRIGUEZ2), Internet email
(b.rodriguez2@genie. geis.com), or drop a postcard to Brad
Rodriguez, Box 77, McMaster University, 1280 Main Street
West, Hamilton, Ontario. 1.8S. 1C0 Canada,

The Computer Journal / #64

49

P. 0. Box 535, Lincoln, CA 95648-0535
(800) 424-8825 or (916) 645-1670

" Mechanical Requirments:

Size Vertical Format Horizontal Format
Full Page 71/8"Hx95/8"V

1/2 Page 312"Hx95/8"V 7T1/8"Hx45/8"V
1/3 Page 21/8"Hx958"V 71/8"Hx 3"V

1/4 Page 33/8"Hx458"V

Market Place 2"H x 3"V

All mechanicals submitted for publication must meet the production standards of the journal. The preferred form is line shot positives
such as PMT, negatives right reading emulsion side down or laser printer output. Mechanicals composed with dot matrix or daisy wheel
printers are not of acceptable quality. Pasted up pages must be done using HOT WAX or other non-visible means, taped art work is not
acceptable. Please contact us regarding ads which do not fall within these specifications.

Advertising Rates:
Size 1 Insertion 2-3 Insertion 4+Insertions
Full $120 $100 $90
1/2 Page 8758 $65 $60
1/3 Page $60 $50 $45
1/4 Page $50 $45 $40
Market Place $25 $20 $100 for 6 issues

Color Charges: $250 per color other than black or $750 for full color (4C) per insertion. Color separations must be supplied with order.
Separation service available at extra cost.

Placement: Advertising position on text pages placed as page layout permits and is not guaranteed. We will make all attempts to honor
special requests. Placements on covers guaranteed at time contract is accepted by publisher. Publisher reserves right to change ad costs.
Advertising contracted before rate changes will be carried at previously agreed rates. Rates are for camera ready copy. Inquire for
typesetting and composition rates.

Magazine Specifications: The Computer Journal is a 48 page saddle stitched book plus cover for a total of 52 pages. Text paper is 60
pound high brilliance offset. Cover paper is 60 pound matte text stock. The magazine is printed offset. Trim size is 8 3/8 inches by 10 7/8
inches with no bleeds. Suggested ruling is 100 to 133 lines per inch and tints above 85% may print as solids.

Production Schedule:

Issue Space Copy Printing Mailing
Date Reservation Required Date Date
Jan/Feb 1 Nov 15 Nov 15 Dec 1 Jan
Mar/Apr 1 Jan 15 Jan 15 Feb 1 Mar
May/Jun 1 Mar 15 Mar 15 Apr 1 May
Jul/Aug 1 May 15 May 15 Jun 1Jul
Sep/Oct 1 Jul 15 Jul 15 Aug 1 Sep
Nov/Dec 1 Sep 15 Sep 15 Oct 1 Nov

Payment must accompany space reservation for advertisements and is not

50 The Computer Journal / #64

TCJ CLASSIFIED

‘WANTED: info. on the BRD Inc. com-
puters DOLPHIN-78 or PORPOISE-78,
ak.a. FDC-78 (6800 based machines).
Also, I need an Apple Ile emulation disk
for my 256K Apple III (I have the Aplle
II+ emulation disk). Roger Olson, 2304
West 4th, North Platte NE 69101.

For Sale:

KayPro 4-all stock as orginally made.
System disk, WordStar 3.3, and some
other software. Printer cable. No manu-
als available. Works fine! Asking $50

Kaypro 2X-Advent TurboRom and drive
decoder board added; now has two HD
drives (96TPI) and one DD drive
(48TPI). Advent system disk, utilities,
and docs-on-disk, WordStar 3.3, etc,,
manuals and one-piece cover. Runs great!
Asking $75.

Kaypro 1 -(last model made) Advent
TurboRom and drive decoder board
added; has one DD (48TPI) drive and
one HD (96TPI) drive; also Minnie
Winnie 20 meg external drive (the ST-
506 drive sold by Advanced Concepts
and Engineering). Loads of software--
running NZCOM, all the Z-system utili-
ties, programming stuff, WordStar 4.0,
3.3, CalcStar, DataStar, and ReportStar,
and more -- proably 7 to 10 megs of
stuff. Manuals, one-piece cover, efc. in-
cluded. A really nice machine! Asking
$200.

Kaypro printer (Juki 6100 daisywheel)
and Tractor Feed - with cable. Works
fine! Asking $60.

Kaypro Technical manual - in 3-ring
binder. $10.

Shipping extra, Contact: Dave Templin,

2978 Spruce Way, West Sacramento, CA
95691, (916) 371-2964.

The Computer Journal / #64

For Sale: Collector’s Guide to Personal
Computers and Pocket Calculators.
Prices and illustations included. 36 pages,
$14.95 plus $2.00 shipping. Fred
Hartfield, Box 52466, New Orleans, LA
70152. Digitial Cottage BBS (504) 897-
5514, help, support, sales, of old sys-
tems.

Avaialble: Legal copies of CP/M,
Borland Software (Turbo Pascal, DBase
11, and more). Many bootable CP/M disks
formats avaialble. Disk copying, most
formats inculding Apple CP/M. Manu-
als and more! Lambda Software Publish-
ing, 149 West Hilliard Lane, Eugene,
OR 97404-3057, (503) 688-3563.

NOW AVAILABLE!

“...a must addition to the
library of every computer
enthusiast. Highly recom-

NEW CLASSIFIED RATES!
NOW $5.00 PER LISTING!

TCJ Classified ads are on a prepaid basis
only. The cost is $5.00 per ad entry.
Support wanted is a free service to sub-
scribers who need to find old or missing
documentation or software. Please limit
your requests to one type of system.

Send your items to:
The Computer Journal

P.O. Box 535
Lincoln, CA 95648-0535

STANVEITS
IERURCSYTIR |

EROTNA

HISTORY
OF THE

mended.”’
—John C. Dvorak,
PC Magazine
Stan Veit’s

PERSONAL COMPUTER

Please Send:

order trom: WORLDCOMMo 1-800-472-0438

65 Macedonia Road, Alexander NC 28701

(Visa and MasterCard accepted)
N.C. Residents Add 6% Sales Tax

_____Hardback Copies of History @ $27.95 plus $3.00 S&H
__ Paperback Copies of History @ $19.95 plus $3.00 S&H
Name

Address

City Zip

51

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Volume Number 1:

-issues 1 to 9

- Serial interfacing and Modem transfers
-Floppy disk formats, Print spooler.

- Adding 8087 Math Chip, Fiber optics

+ §-100 HI-RES graphics.

+ Controlling DC motors, Multi-user
column.

- VIC-20 EPROM Programmer, CP/M 3.0

- CPIM user functions and integration.

Volume Number 2.

-1ssues 10to 19

« Forth tutorial and Write Your Own,

- 68008 CPU for $-100.

- RPM vs CP/M, BIOS Enhancements.
+ Poor Man's Distributed Processing.
- Controlling Apple Stepper Motors.

- Facsimile Pictures on a Micro.

- Memory Mapped I/O on a 2X81.

Volume Number 3:

- Issues 20 to 25

- Designing an 8035 SBC

+ Using Apple Graphics from CP/M

- Soldering & Other Strange Tales

- Build an S-100 Floppy Disk Controlier:
WD2787 Controller for CP/M 68K

- Extending Turbo Pascal: series

- Unsoldering: The Arcane Art

- Analog Data Acquisition & Control:
Connecting Your Computer to the Real
World

- Programming the 8035 SBC

- NEW-DOS: series

- Variability in the BDS C Standard Library

- The SCSI Interface: series

+ Using Turbo Pascal ISAM Files

- The Ampro Little Board Column: series

- C Column: series

- The Z Column: series

- The SCSI Interface: Introduction to SCS!

- Editing the CP/M Operating System

- INDEXER: Turbo Pascal Program to Create
an Index

- Selecting & Building a System

- Introduction to Assemble Code for CP/M

- Ampro 188 Column

- ZTime-1. A Real Time Clock for the Ampro
Z-80 Little Board

Issue Number 26:
- Bus Systems. Selecting a System Bus
- Using the SB180 Real Time Clock
- The SCSI interface: Software for the SCSI
Adapter
- Inside Ampro Computers
NEW-DOS: The CCP Commands
(continued)
- ZSIG Corner
- Affordable C Compilers
- Concurrent Multitasking: A Review of
DoubleDOS

Issue Number 27:

- 68000 TinyGiant. Hawthorne's Low Cost
18-bit SBC and Operating System

- The Art of Source Code Generation:
Di nbling Z-80 Software

- Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation

- The C Column: A Graphics Primitive
Package

- The Hitachi HDB4180: New Life for 8-bit
Systems

- 281G Corner. Command Line Generators
and Aliases

- A Tutor Program in Forth. Writing a Forth
Tutor in Forth

- Disk Parameters. Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

Issue Number 28:

- Starting Your Own BBS

- Build an A/D Converter for the Ampro Little
Board

- HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA

- Using SCS| for Real Time Control

52

- Open Letter to STD Bus Manufacturers
- Patching Turbo Pascal
- Choosing a Language for Machine Control

Issue Number 29:

- Better Software Filter Design

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 1

- Using the Hitachi hd64180: Embedded
Processor Design

- 68000: Why use a new OS and the 680007
- Detecting the 8087 Math Chip

- Floppy Disk Track Structure

- The ZCPR3 Corner

Issue Number 30;

- Double Density Floppy Controller

- ZCPR3 IOP for the Ampro Little Board
- 3200 Hackers' Language

+ MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

- Non-Preemptive Multitasking

- Software Timers for the 68000

- Lilliput Z-Node

- The ZCPR3 Corner

- The CP/M Corner

Issue Number 31:

- Using SCS! for Generalized /O

- Communicating with Floppy Disks: Disk
Parameters & their variations

- XBIOS: A Replacement BIOS for the SB180
- K-OS ONE and the SAGE: Demystifying
Operating Systems

- Remote: Designing a Remote System
Program

- The ZCPR3 Corner. ARUNZ Documentation

Issue Number 32:

Language Development. Automatic
Generation of Parsers for Interactive
Systems
- Designing Operating Systems: A ROM
based OS for the Z81
- Advanced CP/M: Boosting Performance
- Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB
- WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl Terminal Based
Systems
- K-OS ONE and the SAGE: System Layout
and Hardware Configuration
- The ZCPR3 Comer: NZCOM and ZCPR34

Issue Number 33:

- Data File Conversion: Writing a Filter to
Convert Foreign File Formats

- Advanced CP/M: ZCPR3PLUS & How to
Write Self Relocating Code

- DataBase: The First in a Series on Data
Bases and information Processing

- 8CS| for the S-100 Bus: Another Example
of SCSI's Versatility

- A Mouse on any Hardware: Implementing
the Mouse on a Z80 System

- Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

- ZCPR3 Corner. ARUNZ Shells & Patching
WordStar 4.0

Issue Number M:

- Developing a File Encryption System.

- Database: A continuation of the data base
primer series.

- A Simple Multitasking Executive: Designing
an embedded controller multitasking
executive.

- ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

- New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

- Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for CP/
M22

- Macintosh Data File Conversion in Turbo
Pascal.

- The Computer Corner

Issue Number 35:

- All This & Modula-2: A Pascal-like
alternative with scope and parameter
passing.

- A Short Course in Source Code
Generation: Disassembling 8088 software to
produce modifiable assem. source code.

- Real Computing: The NS32032.

 8-100: EPROM Burner project for S-100
hardware hackers.

- Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

- REL-Style Assembly Language for CP/M
and Z-System, Part 1: Selecting your
assembler, linker and debugger.

- The Computer Corner

Issue Number 36:

- Information Engineering: Introduction.

+ Modula-2: A list of reference books.

- Temperature Measurement & Control:
Agricultural computer application.

- ZCPR3 Corner. Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

- Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

- SPRINT: A review.

- REL-Style Assembly Language for CP/M
& ZSystems, part 2.

- Advanced CPI/M: Environmental
programming.
- The Computer Corner.

Issue Number 37:

- C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

- ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

- Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

- Shells: Using ZCPR3 named shell
variables to store date variables.

- Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

- Advanced CP/M. Raw and cooked console
0.

- Real Computing: The NS 32000.

- ZSDOS: Anatomy of an Operating Syster:
Part 1.

- The Computer Corner.

Issue Number 38:

- C Math: Handling Dollars and Cents With
C.

- Advanced CP/M: Batch Processing and a
New ZEX.

- C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

- The Z-System Corner. Shells and ZEX,
new Z-Node Central, system security under
Z.Systems.

- Information Engineering: The portable
Information Age.

- Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.

- Shelis: ZEX and hard disk backups.

- Real Computing: The National
Semiconductor NS320XX.

- ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39;

- Programming for Performance: Assembly
Language techniques.

- Computer Aided Publishing: The Hewlett
Packard LaserJet.

- The Z-System Corner:
enhancements with NZCOM.

- Generating LaserJet Fonts: A review of
Digi-Fonts.

Systemn

- Advanced CP/M: Making old programs Z-
System aware.

- C Pointers, Arrays & Structures Made
Easier: Part 3. Structures.

- Shells: Using ARUNZ alias with ZCAL.

- Real Computing: The National
Semiconductor NS320XX.

- The Computer Corner.

Issue Number 40:

- Programming the LaserJet: Using the
escape codes.

Beginning Forth Column: Introduction.
« Advanced Forth Column: Variant Records
and Modules.
- LINKPRL: Generating the bit maps for PRL
files from a REL fite.
- WordTech's dBXL: Writing your own
custom designed business program.
- Advanced CP/M: ZEX 5.0xThe machine
and the fanguage.
- Programming for Performance: Assembly
language techniques.
- Programming Input/Output With C:
Keyboard and screen functions.
- The Z-System Corner. Remote access
systems and BDS C.
- Real Computing: The NS320XX
- The Computer Corner.

Issue Number 41:

- Forth Column: ADTs, Object Oriented
Concepts.
- Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

How to add Data Structures in Forth
- Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler.
- The Z-System Corner. Extended Multiple
Command Line, and afiases.
- Programming disk and printer functions
with C.
- LINKPRL: Making RSXes easy.
- SCOPY: Copying a series of unrelated
files.
- The Computer Corner.

Issue Number 42:

- Dynamic Memory Allocation; Allocating
memory at runtime with examples in Forth.

- Using BYE with NZCOM.

- C and the MS-DOS Screen Character
Attributes.

- Forth Column: Lists and object oriented
Forth.

- The Z-System Corner. Genie, BDS Z and
Z-System Fundamentals.

- 68705 Embedded Controller Application:
An example of a single-chip microcontroller
application.

- Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

- Real Computing: The NS 32000.

- The Computer Corner

Issue Number 43:

- Standardize Your Floppy Disk Drives.

- A New History Shell for ZSystem.

+ Heath's HDOS, Then and Now.

- The ZSystem Corner: Software update
service, and customizing NZCOM.

- Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

- Lazy Evaluation: End the evaluation as
soon as the result is known.

- §-100: There's still life in the old bus.

- Advanced CP/M: Passing parameters, and
complex error recovery.

- Real Computing: The NS32000.

- The Computer Corner.

Issue Number 44:

- Animation with Turbo C Part 1: The Basic
Tools.

- Multitasking in Forth: New Micros F68FC11
and Max Forth.

- Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

- DosDisk: MS-DOS disk format emulator for
CP/M.

- Advanced CP/M: ZMATE and using lookup

The Computer Journal / #64

and dispatch for passing parameters.

- Real Computing: The NS32000.

- Forth Column: Handling Strings.

- Z-System Comer. MEX and telecommuni-
cations.

+ The Computer Corner

Issue Number 45:

- Embedded Systems for the Tenderfoot:
Getting started with the 8031.

+ The Z-System Corner: Using scripts with
MEX.

- The Z-System and Turbe Pascal: Patching
TURBO.COM to access the Z-System.

+ Embedded Applications: Designing a Z80
RS-232 communications gateway, part 1.

- Advanced CP/M: String searches and
tuning Jetfind.

+ Animation with Turbo C: Part 2, screen
interactions.

+ Real Computing: The NS32000.

> The Computer Corner.

lssue Number 46:
- Buiid a Long Distance Printer Driver.

Using the 8031's built-in UART for serial
communications.
- Foundational Modules in Modula 2.
- The Z-System Corner. Patching The Word
Plus speil checker, and the ZMATE macro
text editor.
- Animation with Turbo C: Text in the
graphics mode.
- 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
280 CTC.

issue Number 47.

+ Controlling Stepper Motors with the
B88HC11F

+ Z-System Corner. ZMATE Macro Language
- Using 8031 Interrupts

- T-1: What it is & Why You Need to Know

- ZCPR3 & Modula, Too

- Tips on Using LCDs: Interfacing to the
68HC705

- Real Computing: Debugging, NS32 Mutti-
tasking & Distributed Systems

- Long Distance Printer Driver: correction

- ROBO-SOG 90

The Computer Journal Back Issues

- Controtling Home Heating & Lighting, Pt. 1
- Getting Started in Assembly Language

- LAN Basics

- PMATE/ZMATE Macros, Pt. 2

- Real Computing

- Z.System Corner

- Z2-Best Software

- The Computer Corner

Issue Number 80:

- Offioad a System CPU with the Z181

- Floppy Disk Alignment w/RTXERB, Pt. 2

- Motor Control with the FEB8HC11

- Modula-2 and the Command Line

- Controlling Home Heating & Lighting, Pt. 2
- Getting Started in Assembly Language Pt 2
- Locat Area Networks

- Using the ZCPR3 IOP

- PMATE/ZZMATE Macros, Pt. 3

+ Z-System Corner, PCED

- Z-Best Software

- Real Computing, 32FX18, Caches

- The Computer Corner

Issue Number 81:

- Introducing the YASBEC

- Fioppy Disk Alignment w/RTXEB, Pt 3

- High Speed Modems on Eight Bit Systems
- A Z8 Talker and Host

- Local Area Networks--Ethernet

- UNIX Connectivity on the Cheap

- PC Hard Disk Partition Table

- A Short Introduction to Forth

- Stepped Inference as a Technique for
Intelligent Real-Time Embedded Control

- Real Computing, the 32CG160, Swordfish,
DOS Command Processor

- PMATE/ZMATE Macros

- Z-System Corner, The Trenton Festival

- Z-Best Software, the Z3HELP System

- The Computer Corner

Issue Number 32;

- YASBEC, The Hardware

- An Arbitrary Waveform Generator, Pt. 1
-B.Y.Q. Assembler...in Forth

- Gefting Started in Assembly Language, Pt. 3

- The NZCOM I10P
- Z-BEST Software
- The Computer Corner

Issue Number 54:

- Z-System Corner

-B.Y.O. Assembler

- Local Area Networks

- Advanced CP/M

- ZCPR on a 16-Bit intel Piatform

- Real Computing

* Interrupts and the 280

- 8 MHZ on a Ampro

- Hardware Heavenn

- What Zilog never told you about the Super8
- An Arbitary Waveform Generator
- The Development of TDOS

- The Computer Comer

Issue Number 55:

- Fuzzilogy 101

- The Cyclic Redundancy Check in Forth
- The Interetwork Protocoi (IP)

- Z-System Cormner

- Hardware Heaven

- Real Computing

- Remapping Disk Drives through the Virtual
BIOS

- The Bumbling Mathmatician

- YASMEM

- Z-BEST Software

- The Computer Corner

Issue Number 56:

- TCJ - The Next Ten Years

- Input Expansion for 8031

- Connecting IDE Drives to 8-Bit Systems
- Real Computing

- 8 Queens in Forth

- Z-System Cormner

- Kaypro-84 Direct File Transfers

- Analog Signal Generation

- The Computer Corner

Issue Number 57:
- Home Automation with X10

Issue Number 59:

- Moving Forth

- Center Fold IMSAI MPU-A

- Developing Forth Applications
- Real Computing

- Z-System Corner

- Mr. Kaypro Review

- DR. $-100

- The Computer Corner

{ssue Number 60:
- Moving Forth Part If
- Center Fold IMSAI CPA
- Four for Forth
- Real Computing
- Debugging Forth
- Support Groups for Classics
- Z-System Corner
- Mr. Kaypro Review
-DR. 8-100
The Computer Corner

Issue Number 61:
- Multiprocessing 8809 part |
- Center Fold XEROX 820

- Quality Control

- Real Computing

- Support Groups for Classics
- Z-System Corner

- Operating Systems - CP/M

- Mr. Kaypro SMHZ

- The Computer Comner

Issue Number 62:
- SCSI EPROM Programmer

- Center Fold XERQX 820
-DR $-100

* Real Computing

- Moving Forth part Il

- Z-System Comer

- Programming the 8528 CIA
- Reminiscing and Musings

- Modem Scripts

- The Computer Comer

Issue Number 62:

- The Computer Corner - The NZCOM {OP - File Transfer Protocols - SCS| EPROM Programmer part i
. - Servos and the FB8HC11 - MDISK at 8 MHZ. ' Center Fold XEROX 820
Issue Number 48: - Z-System Corner, Programming for - Real Computing - DR $-100
- Fast Math Using Logarithms Compatibility - Shell Sort in Forth - Real Computing
- Forth and Forth Assembler - Z-Best Software - Z-System Corner - Multiprocessing Part Il
- Modula-2 and the TCAP - Real Computing, X10 Revisited - Introduction to Forth - Z-System Comner
- Adding a Bernoulli Drive to a CP/M - PMATE/ZMATE Macros - DR. §-100 - 6809 Operating Systems
Computer (Building a SCSI Interface) - Controlling Home Heating & Lighting, Pt. 3 - Z AT Last! - Reminiscing and Musings
- Review of BDS “Z" - The CPU280, A High Performance Single- - The Computer Comner - IDE Drives Part I
- PMATE/ZMATE Macros, Pt 1 Board Computer * The Computer Corner
- Real Computing - The Computer Corner Issue Number 58:
- Z-System Comer. Patching MEX-Plus and + Multitasking Forth
TheWord, Using ZEX Issue Number 53: * Computing Timer Values SPECIAL DISCOUNT
- Z-Best Software - The CPU280 * Affordable Deveiopment Tools
- The Computer Comer - Local Area Networks - Real Computing 15% on cost of Back Issues when
lssue Number 49: + Am Arbitrary Waveform Generator - Z-System Corner buymg from 1 to Current Issue.
ber 49:) h
_ Real Computing - Mr. Kaypro 10% on cost of Back Issues when
- Computer Network Power Protection - Zed Fest'91 - DR. §-100 buying 20 or more issues.
- Floppy Disk Alignment w/RTXEB, Pt. 1 - Z-System Cormer The Computer Comer ying .
- Motor Control with the F68HC11 - Getting Started in Assembly Language
4 us. Canada/Mexico Europe,/Other N\
Subscriptions (CA not taxable) (Surface) (Air) (Surface) (Air) Name:
1year (6 issues) $2400 $3200 $34.00 $3400 $4400 Address:
2 years (12 issues) $44.00 $60.00 $64.00 $64.00 $84.00
Back lIssues (CA tax) add these shipping costs for each issue ordered
Bound Volumes $20.00 ea +$300 +$350 +$650 +$400 +$17.00
#20 thru #43 are $3.00 ea. +$100 +$100 +$125 +$150 +$250
#44andup are$4.00ea. +$125 +$125 +$1.75 +3200 +$350 Credit Card # . y y exp___/___

Payment is accepted by check, money order, or Credit Card (M/C,

i ippi disks ordered
Software Disks (CA tax) add these shipping costs for each 3 disks ordere VISA, CarteBlanche, Diners Glub). Ghecks must be in US funds,

MicroC Disks are $6.00ea +$100 +8$100 +$125 +§150 +8250 4rawn on a US bank. Credit Card orders can call 1(800) 424-8825.
tems: Back Issues Total
MicroC Disks Total T‘ '_Ib_e_C.Qmp.ut.ef_-lQumal
California state Residents add 7.25% Sales TAX P.O. Box 535. Lincoln. CA 95648-0535
Subscription Total il ' '
_ Total Enclosed Phone (916) 645-1670 , y

The Computer Journal / #64 53

The Computer Journal - Micro Cornucopia Kaypro Disks

K1
MODEM PROGRAMS

K2
CP/M UTILITIES

K3
GAMES

K4
ADVENTURE

K5
MX80/GEM 10X GRAPHICS

K6
TEXT UTILITIES

K7
SMALL C VER 2

K8
SOURCE OF SMALL C -

K9
GENERAL UTILITIES

K10
Z80 AND LINKING ASSEM

K11
CHECKBOOK PROGRAM &
LIBRARY UTILITIES

K12
KAYPRO FORTH

K13
SOURCE OF FIG-FORTH

K14
SMARTMODEM PROGRAMS

K15
HARD DISK UTILITIES

K16
PASCAL COMPILER

K17
Z80 TOOLS

KI8
SYSTEM DIAGNOSTICS

K19
PROWRITER GRAPHICS

K20
MICROSHERE’S COLOR
GRAPHICS BOARD

K21
SBASIC & SCREEN DUMP

K22
ZCPR

K23
FAST TERMINAL &
RCPM UTILITIES

K24
KEYBOARD TRANSLATOR &
MBASIC GAMES

K25
Z80 MACRO ASSEMBLER

K26
EPROM PROGRAMMER/TOOLS

K27
TYPING TUTORIAL

K28
MODEM 730 SOURCE

K29
TURBO PASCAL GAMES I

K30
TURBO PASCAL GAMES Il

K31
TURBO BULLETIN BOARD

K32
FORTH-83

K33
UTILITIES

K34
GAMES

K35
SMALL C VER 2.1

K36
SMALL C LIBRARY

K37
UTILITIES PRIMER

K38
PASCAL RUNOFF WINNERS
FIRST - THIRD

K39
PASCAL RUNOFF WINNERS
FORTH & FIFTH

K40
PASCAL RUNOFF WINNERS
SIXTH PLACE

K41
EXPRESS 1.01 TEXT EDIT

K42
PASCAL RUNOFF-GRAPHICS

K43
PASCAL RUNOFF-GAMES

K44
PASCAL RUNOFF-PRINTERS

K45
PASCAL RUNOFF-UTILITIES

K46
PASCAL RUNOFF-TURBO UTILS

K47
256K RAM SOFTWARE

K48
C CONTEST WINNERS |

K49
C CONTEST WINNERS II

TC]_ImcﬂmpuzeL.taumal

P.O. Box 535, Lincoln, CA 95648-0535
Phone (916) 645-1670

Shipping Cost to

Added these costs

us.

$1.00

Micro C Disks are $6.00 each plus shipping costs.

Canada/Mexico Europe/Other
Surface Air Surface Air
$1.00 $1.25 $1.50 $2.50

Shipping costs are for GROUPS of 1 to 3 disks.

The Computer Journal / #64

Computer Corner

By Bill Kibler

I have three items for this corner and for
a change some space to cover the items
in. Thanks Brad for keeping it shorter!
It realiy has been nice that TC.Js writers
have been so prolific these days, but
unfortunately it meant I (or my column)
suffered. Lets see if I can make up for it.

Stan Veit

Several weeks ago I received a call from
Stan Veit. For those who don’t know
Stan, he was instrumental in taking
Computer Shopper from a small classi-
fied monthly and making it the worlds
largest computer and advertising maga-
zine. I have since found out, Stan’sback-
ground is considerably more involved
with classic computers than that.

It seems Stan was the First owner/man-
ager of a computer store in New York
city. Since only one other store existed
in Los Angeles at the time, these two
owners had lots of first hand knowledge
about the computer industries starting
days, which they shared with each other.

Stan wrote about these early days while
being editor of Computer Shopper. Those
columns are now in a book called, ‘‘Stan
Veit’s History of The Personal Com-
puter’’, published by WorldComm Press,
65 Macedonia Rd., Alexander, NC
28701, (704) 252-9515.

My only complaint about the book has to
do with the original column format. My
writers should all get this book, as it
shows a good column writing style and
Stan does a good job of making sure all
the facts are repeated every issue as
needed. That repeating however gets a
bit annoying in the book. I would rather
Stan had had the time to re-write some

The Computer Journal / #64

it and take the sections that repeat pre-
vious discussions and expand them or
include them in previous sections. This
is something I will be keeping in mind
if we ever publish 7CJ’s columns in a
book.

Stan’s personal involvement comes
across excellently in the book. He is a
good writer and his experiences are well
illustrated in the book in both words and
pictures. I found the book a great source
of which companies made which sys-
tems. His personal introductions of people
that are now very famous gives you an
insight into their humble beginning, Steve
Jobs getting his jeans sewed up by Stan’s
mother-in-law is but one sample of in-
sight and humor combined.

For anyone who is serious about collect-
ing and using older systems, the book is
an absolute must. My only hope is that
Stan decides to write more about those
early days. Since each chapter is one
columns worth, I am sure he had lots
more to say about each company and
their products. What about it Stan, a
book for each major product? I can see
it now, Stan Veit’s history of the S-100
computers. Or..”’ Apple: from torn jeans
to three piece suits, in one year!”’

Changes At TCJ!

If you are subscribers of Computer Craff,
you will by now know that they are chang-
ing their name to be more like our’s
(MicroComputer Journal). They also are
dropping any support for older PC/XT
platforms. The Computer Journal’s read-
ers are mostly eight bit system users, but
many of you have been a bit upset that
we have not supported the early PC clone
models. I have stated since taking over

that I felt others were providing support
for the PC/XT platforms.

Since Computer Craft is no longer sup-
porting them, and their used price is
now below $100 for used mother boards,
I feel my previous position is no longer
valid. My main concern, and I am sure
the concern of most readers, is that 7CJ
does not go the way of other magazines
and start phasing out all other system
support. To make sure that doesn’t hap-
pen, I am selecting one author to provide
PC/XT support.

Out of the ten TCJ regular writing staff,
having one provide support is allocating
only 10% to the cause. That leaves all
the other writers to cover their regular
beats. This will also make our regulars
feel better when they provide not only
their normal support but show how it
relates to the PC platforms as well.

I do not have a commitment from Frank
Sergeant, but I am trying to get him as
our first PC support person. Frank cer-
tainly has the credentials, wants to help
the magazine, and is well known by
most of you for his excellent program
PYGMY Forth. Some ideas I plan on
explaining to Frank, are: porting
PYGMY to ROM on a PC; building
embedded controllers using PC/XT
boards; serial communications on a PC/
XT using the keyboard port; and 6809
(as in COCO design) or Z180/ZCPR ex-
pansion boards.

His first assignments if he agrees to the
task at hand, will be explaining the PC/
XT architecture for those who have not
been previously indoctrinated. I dare say
that many users have little true under-
standing of the PC/XT hardware designs,

55

and thus don’t know why so many of us
at TCJ hate the hardware with a passion.
I have spent the last three years working
with 68000 boards that reside as expan-
sion boards on PC based platforms. The
68000 side has always been easy and
straight forward, the PC side anything
but, which another way of saying Frank
will have his work cut out for him.

This move should also help our readers
find platforms for new projects. The flood
of passed over PC/XT designs and ex-
pansion products is becoming enormous.
Vendors are starting to practically give
them away. They are looking for places
to advertise not only these older PC items,
but a few old Z80 or 6809 based items as
well. With our past position on no offi-
cial support, these advertiser were pass-
ing us by. No more!

New Advertising Strategy

The Computer Journal has been doing
well for the last year. Although not run-
ning in the red, we are not making money
cither. We need advertisers to make the
difference. Our readers are also com-
plaining constantly that they can not find
support or products to meet their needs.
Our advertising rates were reflective of
days gone by. All this has come to indi-
cate time is right to lower our rates. And
lower we have.

Effective with this issue, we are drop-
ping back our rates in hopes that many
of the mom-pop type vendors can start
advertising and providing the reader with
sources to meet their needs. How much
of a drop, does 70% DROP sound about
right. See page 50 for a complete revised
rate card.

The major idea with this reduction is to
give our readers names and address of
vendors who have products they are look-
ing for. David Klink’s letter in our Reader
To Reader section is typical of our
reader’s problems. David would like to
build something using the new Motorola
68306 but is at a loss to fine one. I could

56

call our local Motorola rep and get one,
but one doesn’t help our readers.

Since spending so much of my time doing
the magazine, I have lost contact with
many vendors that provided small quan-
tity sources of products. Hopefully they
will see the changes in our rates and
reconsider about advertising with 7CJ.

WHAT NEXT?

Now that The Computer Journal is mov-
ing to PC based platforms, I guess I can
admit that I am working on OS/2 doing
C programming, The move was some-
what of my employers choice, but I did
agree to it. The upshot of these changes
is that I have become familiar with OS/
2 in considerably more detail than most.
Our company has had a single product
on OS/2 for some time now. It has had
poor acceptance by our users. The pro-
grammers have had more problems with
their tools than they want to think about.
It is getting better however.

The biggest surprise I have had is in
finding books to support OS/2. There
are so little it is amazing the product is
being used at all. In one major book
store chain, the Windows section is many
feet in length. The OS/2 books however,
fill about 10 to 12 inches of space. The
new Windows NT section is already
longer than OS/2 and the product has
only been out a few weeks.

I must admit to finding a few good books
and will discuss them next time. I think
there are two reasons for the shortage,
one is just lack of OS/2 sales, the other
is 08/2’s compatibility with DOS. So
much of how OS/2 works is like PCDOS
and thus many users have not decided to
look deeper into the system. For pro-
grammers, IBM's own series of RED
BOOKS is quite good and complemented
by ON-LINE support, such that using
outside books may be a thing of the past.

The most disturbing thing is actually
stepping back in time again. The CP/M
world has many useful utilities that have
never made it to the MSDOS world. It
has always amazed me how users can

talk about how great MSDOS is yet the
advanced tools and utilities that I came
to love in the CP/M world have no equiva-
lent. The worse part is the users have
little understanding of their loss, but
instead just work around the problems
or make their own crude tools to do the
job.

Well for new users to OS/2 welcome
back to the dark ages. Some MSDOS
tools have been ported, but in many cases
only half heartedly. As time moves on I
hope this situation will change. 0S/2 2.1
is a very impressive platform and as
such deserves better press and support. I
hope to explain that position next time.

Now when talking about programming,
I expanded a simple main.c file with all
the listing options turned on. That means
all the included and header files would
be printed out in the listing. Well my
35K source file became 6,750K long!
That means over 6 megs of data was
included during the assembly process.
Try assembling one of these OS/2 C
modules on a small memory machine.
Our machines now have 16 Megs of
memory and 350 MByte hard drives as
minimum setup.

Speaking of drives, it will take at least
100 megs of hard drive for the system
and a few programs. The manual says
you can squeeze it onto a 60 meg drive,
but don't try. Now I do understand that
Windows NT is about twice as big as
0812, so if you really want to wing it up
to the big time, up might go an NT it...

The main problem you will face if you
try a small disk, is swap space. The OS/
2 system uses virtual memory, which
means programs (many programs) can
share the same memory space. The sys-
tem just moves parts of the program out
onto disk when not being used. Like
when I was compling the 6 megs. I as-
sume that at least half of that ended up
temporarily on disk

Oh well more next time....and...

Welcome to the ever improving The
Computer Journal. Have fun hacking....

The Computer Journal / #64

T TP TC ’ TheComguterJoumal

Discover Advent Kaypro Upgrades (" TCJ MARKET PLACE 1
: The Z-Letter TurboROM. Allows flexible Advertising for small business
e Z-letter is the only publication configuration of your entire First Insertion: $25
clusively for CP/M and the Z-System. system, read/write additional ?3;;‘ ssei;m-m' $20
- issues $100
e computers and Spellbinder support formats and more, only $35. Rates include typesetting.
cénsed CP/M distributor. Payment must accompany order.
Replacement Floppy drives and VISA, MasterCard, Diner's Club,
, ions: $18 US, $22 Canada and Hard Drive Conversion Kits. Call - Carte Blanche accepted.
Mexico, $36 Overseas. Write or call for or write for availability & pricing. Checks, money orders must be
froe le US funds. Resetting of ad
el sampic. consitutes a new advertisement
Sl The Z-Letter at first time insertion rates.
- Lambda Software Publishing Call (916)483-0312 Mail ad or contact
" 149 West Hilliard Lane evesbhweikesntd:f 0:‘ write The Computer Journal
] uc affor P.O. Box 536
E“g°‘;%30§8987g(5)233057 4000 Norris Ave. Lincoln, CA 96648-05636
' (503) B Sacramento, CA 95821 _ Y,

NEW MAGAZINE

the world of 68' micros
supporting
Tandy Color Computer
0§8-9 & OSK

CP/M SOFTWARE

BO page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, §19.95
lus $3.00 shipping and handling. Also, MS/PC-DOS Soft-
ware. Disk Copying, including AMSTRAD. Send self addressed,
stamped envelope for free Flyer, Catalog $1.00

$23/year for 8 issues

$30/year Canada/Mexico
$35/year overseas

Elllam Associates

Box 2664 Published by:
Atascadero, CA 93423 FRNA Systems
805-466-8440 Warner Robins

GA 31099-0321

€-100/1€€€-696 New from . PCB's in Minutes
M&T Books! From LaserPrint!*

: i g1/ x 1" * Or Ph
| S Fath dr " s
% iron to apply.
- Compupro Morrow The New Model Y
Cromemco
and morel I’nl’ III.IIE PP WET
: '; I T T e R T L L R ETE Profiz;:’gilppfglt[&nous dIHOPbgvs
cnrdS' Docs. Sl}stems 1. LasarPrint
2. Iron-On 2 Iron-On ‘
Jack Woeht 3. ::J‘I-Off 3.§:¢ok0ﬁululohr !

An €xtra Layer of Resist Transfers Laser or

ol
for Super Fine Traces Copier Toner as Resist |

- Dr. §100

- e ToE512rr-2 205h$30/405n$50/1005h$100 Blue/Wet (No Mix)|

Herb .lohnson, MsT 2 Sample Pack 5 Shts Blue + 5 Shts Wet $20 |

: CN 5956 #105 = VISRMC/PO/CHIMO $4 SGH - 2nd Doy Mall

"o) [' = Available at bookstores Techniks Inc. P.O. Box 463 Ringoes NJ 08551\
Princeton, NJ 08543 T ks everywhere } ~ (908)708-8249

" (609) 77] -1503 Technical Times or call 1-800—688-2&2%

